Clouded Leopard Optimization: A New Nature-Inspired Optimization Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019499" target="_blank" >RIV/62690094:18470/22:50019499 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9899451" target="_blank" >https://ieeexplore.ieee.org/document/9899451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3208700" target="_blank" >10.1109/ACCESS.2022.3208700</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clouded Leopard Optimization: A New Nature-Inspired Optimization Algorithm
Popis výsledku v původním jazyce
This paper proposes a new nature-inspired metaheuristic algorithm called Clouded Leopard Optimization (CLO), which mimics the natural behavior of clouded leopards in the wild. The fundamental inspiration of CLO is derived from two ways of natural behaviors of the clouded leopard, including hunting strategy and daily resting on trees. CLO is mathematically modeled in two phases of exploration and exploitation, based on the simulation of these two natural behaviors. CLO performance is evaluated in solving sixty-eight benchmark functions, including unimodal, multimodal, CEC 2015, and CEC 2017 types. The performance of CLO in solving optimization problems is compared with the performance of ten famous metaheuristic algorithms. The simulation results show that the proposed CLO approach with high ability in exploration, exploitation, and balancing between them has a high capability in optimization applications. Simulation results show that CLO performs better in most test functions than competitor algorithms. In addition, the implementation of CLO on four engineering design issues demonstrates the capability of the proposed approach in real-world applications.
Název v anglickém jazyce
Clouded Leopard Optimization: A New Nature-Inspired Optimization Algorithm
Popis výsledku anglicky
This paper proposes a new nature-inspired metaheuristic algorithm called Clouded Leopard Optimization (CLO), which mimics the natural behavior of clouded leopards in the wild. The fundamental inspiration of CLO is derived from two ways of natural behaviors of the clouded leopard, including hunting strategy and daily resting on trees. CLO is mathematically modeled in two phases of exploration and exploitation, based on the simulation of these two natural behaviors. CLO performance is evaluated in solving sixty-eight benchmark functions, including unimodal, multimodal, CEC 2015, and CEC 2017 types. The performance of CLO in solving optimization problems is compared with the performance of ten famous metaheuristic algorithms. The simulation results show that the proposed CLO approach with high ability in exploration, exploitation, and balancing between them has a high capability in optimization applications. Simulation results show that CLO performs better in most test functions than competitor algorithms. In addition, the implementation of CLO on four engineering design issues demonstrates the capability of the proposed approach in real-world applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
10
Číslo periodika v rámci svazku
Říjen 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
102876-102906
Kód UT WoS článku
000864147700001
EID výsledku v databázi Scopus
2-s2.0-85139440234