Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020225" target="_blank" >RIV/62690094:18470/23:50020225 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fmech.2022.1126450/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmech.2022.1126450/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmech.2022.1126450" target="_blank" >10.3389/fmech.2022.1126450</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
Popis výsledku v původním jazyce
This paper introduces a new metaheuristic algorithm named the Osprey Optimization Algorithm (OOA), which imitates the behavior of osprey in nature. The fundamental inspiration of OOA is the strategy of ospreys when hunting fish from the seas. In this hunting strategy, the osprey hunts the prey after detecting its position, then carries it to a suitable position to eat it. The proposed approach of OOA in two phases of exploration and exploitation is mathematically modeled based on the simulation of the natural behavior of ospreys during the hunting process. The performance of OOA has been evaluated in the optimization of twenty-nine standard benchmark functions from the CEC 2017 test suite. Furthermore, the performance of OOA is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed OOA has provided superior performance compared to competitor algorithms by maintaining the balance between exploration and exploitation. In addition, the implementation of OOA on twenty-two real-world constrained optimization problems from the CEC 2011 test suite shows the high capability of the proposed approach in optimizing real-world applications.
Název v anglickém jazyce
Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems
Popis výsledku anglicky
This paper introduces a new metaheuristic algorithm named the Osprey Optimization Algorithm (OOA), which imitates the behavior of osprey in nature. The fundamental inspiration of OOA is the strategy of ospreys when hunting fish from the seas. In this hunting strategy, the osprey hunts the prey after detecting its position, then carries it to a suitable position to eat it. The proposed approach of OOA in two phases of exploration and exploitation is mathematically modeled based on the simulation of the natural behavior of ospreys during the hunting process. The performance of OOA has been evaluated in the optimization of twenty-nine standard benchmark functions from the CEC 2017 test suite. Furthermore, the performance of OOA is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed OOA has provided superior performance compared to competitor algorithms by maintaining the balance between exploration and exploitation. In addition, the implementation of OOA on twenty-two real-world constrained optimization problems from the CEC 2011 test suite shows the high capability of the proposed approach in optimizing real-world applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Mechanical Engineering
ISSN
2297-3079
e-ISSN
2297-3079
Svazek periodika
8
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
43
Strana od-do
"Article Number: 1126450"
Kód UT WoS článku
000925502800001
EID výsledku v databázi Scopus
2-s2.0-85147388943