Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020255" target="_blank" >RIV/62690094:18470/23:50020255 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705122011042" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705122011042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2022.110011" target="_blank" >10.1016/j.knosys.2022.110011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
Popis výsledku v původním jazyce
In this paper, a new metaheuristic algorithm called the Coati Optimization Algorithm (COA) is introduced, which mimics coati behavior in nature. The fundamental idea of COA is the simulation of the two natural behaviors of coatis: (i) their behavior when attacking and hunting iguanas and (ii) their escape from predators. The implementation steps of COA are described and mathematically modeled in two phases of exploration and exploitation. COA performance is evaluated on fifty-one objective functions, including twenty-nine functions from the IEEE CEC-2017 test suite and twenty-two real-world applications from the IEEE CEC-2011 test suite. COA's results are compared to those of eleven well-known metaheuristic algorithms. The simulation results indicate that COA has an evident superiority over the compared algorithms by balancing exploration in global search and exploitation in local search, and is far more competitive. To assess the COA's effectiveness in real-world applications, the proposed approach is implemented on the IEEE CEC-2011 test functions and four practical optimization problems, which the simulation results indicate the high capability of COA in dealing with these types of optimization problems.
Název v anglickém jazyce
Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems
Popis výsledku anglicky
In this paper, a new metaheuristic algorithm called the Coati Optimization Algorithm (COA) is introduced, which mimics coati behavior in nature. The fundamental idea of COA is the simulation of the two natural behaviors of coatis: (i) their behavior when attacking and hunting iguanas and (ii) their escape from predators. The implementation steps of COA are described and mathematically modeled in two phases of exploration and exploitation. COA performance is evaluated on fifty-one objective functions, including twenty-nine functions from the IEEE CEC-2017 test suite and twenty-two real-world applications from the IEEE CEC-2011 test suite. COA's results are compared to those of eleven well-known metaheuristic algorithms. The simulation results indicate that COA has an evident superiority over the compared algorithms by balancing exploration in global search and exploitation in local search, and is far more competitive. To assess the COA's effectiveness in real-world applications, the proposed approach is implemented on the IEEE CEC-2011 test functions and four practical optimization problems, which the simulation results indicate the high capability of COA in dealing with these types of optimization problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-based systems
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
259
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
43
Strana od-do
"Article Number: 110011"
Kód UT WoS článku
000934113200001
EID výsledku v databázi Scopus
2-s2.0-85141454474