Genetic Algorithm-enhanced Rank aggregation model to measure the performance of Pulp and Paper Industries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251925" target="_blank" >RIV/61989100:27240/22:10251925 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360835222005551?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360835222005551?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cie.2022.108548" target="_blank" >10.1016/j.cie.2022.108548</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic Algorithm-enhanced Rank aggregation model to measure the performance of Pulp and Paper Industries
Popis výsledku v původním jazyce
Performance measurement is a complex but important task required in all sectors. The problem however arises when usage of different methods for performance assessment provides different results. Under such circum-stances when there is a difference of opinions, rank aggregation methods can be used to provide the best solution to decision-makers (DMs). Such approaches, also known as data fusion approaches, combine ranked lists from various methods to generate a consensus. In this study, a novel rank aggregation method is proposed for addressing the problem of conflicting MCDM ranking results. The suggested method uses genetic algorithm (GA) to minimize the Euclidean distance between the ideal ranking and the ranking computed by multiple MCDM methods. This model is embedded into a hybrid multi-criteria decision-making (HMCDM) approach, which is divided into three distinct phases. The first phase identifies the most efficient alternatives; the second analyses the rankings obtained through various MCDM methods; and finally, a compromise ranking result is generated. The proposed approach is employed to measure the performance of Indian Pulp and Papermaking Industries (IPPI).
Název v anglickém jazyce
Genetic Algorithm-enhanced Rank aggregation model to measure the performance of Pulp and Paper Industries
Popis výsledku anglicky
Performance measurement is a complex but important task required in all sectors. The problem however arises when usage of different methods for performance assessment provides different results. Under such circum-stances when there is a difference of opinions, rank aggregation methods can be used to provide the best solution to decision-makers (DMs). Such approaches, also known as data fusion approaches, combine ranked lists from various methods to generate a consensus. In this study, a novel rank aggregation method is proposed for addressing the problem of conflicting MCDM ranking results. The suggested method uses genetic algorithm (GA) to minimize the Euclidean distance between the ideal ranking and the ranking computed by multiple MCDM methods. This model is embedded into a hybrid multi-criteria decision-making (HMCDM) approach, which is divided into three distinct phases. The first phase identifies the most efficient alternatives; the second analyses the rankings obtained through various MCDM methods; and finally, a compromise ranking result is generated. The proposed approach is employed to measure the performance of Indian Pulp and Papermaking Industries (IPPI).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Industrial Engineering
ISSN
0360-8352
e-ISSN
1879-0550
Svazek periodika
172
Číslo periodika v rámci svazku
říjen 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
nestrankovano
Kód UT WoS článku
000864622600009
EID výsledku v databázi Scopus
—