Evaluation and selection of clustering methods using a hybrid group MCDM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242773" target="_blank" >RIV/61989100:27510/19:10242773 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0957417419305135?token=D41C16756DA3F3573623F970AA02971290A7D87A826CED707A2D6890FE262349297E1ED3E76AD18D0B47190E2AA54619" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0957417419305135?token=D41C16756DA3F3573623F970AA02971290A7D87A826CED707A2D6890FE262349297E1ED3E76AD18D0B47190E2AA54619</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2019.07.034" target="_blank" >10.1016/j.eswa.2019.07.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation and selection of clustering methods using a hybrid group MCDM
Popis výsledku v původním jazyce
Due to the lack of objective measures, the evaluation and prioritization of clustering methods is inherently challenging. Since their evaluation generally involves numerous criteria, it can be designed as a multiple criteria decision making (MCDM) problem and using multiple data sets, the problem can be formulated as a group MCDM modeling. In this paper, a MCDM-based framework is proposed to evaluate and rank a number of clustering methods. The proposed approach employs three group MCDM algorithms and a Borda count method which leads to a comprehensive, robust framework capable of evaluating and ranking multiple clustering models on manifold data sets (cases). Moreover, we introduce a hybrid data clustering algorithm which combines a particle swarm optimization (PSO) algorithm with a K-means clustering algorithm. Finally, a clustering comparison with regard to both external and internal evaluation indicators is another contribution of this paper. Six clustering methods are compared based on five evaluation measures. The results of comparative experiments on ten data sets indicate the effectiveness of the proposed hybrid clustering method. More importantly, the experimental results vividly demonstrate the effectiveness of the group MCDM-based evaluation on clustering model selection. (C) 2019 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Evaluation and selection of clustering methods using a hybrid group MCDM
Popis výsledku anglicky
Due to the lack of objective measures, the evaluation and prioritization of clustering methods is inherently challenging. Since their evaluation generally involves numerous criteria, it can be designed as a multiple criteria decision making (MCDM) problem and using multiple data sets, the problem can be formulated as a group MCDM modeling. In this paper, a MCDM-based framework is proposed to evaluate and rank a number of clustering methods. The proposed approach employs three group MCDM algorithms and a Borda count method which leads to a comprehensive, robust framework capable of evaluating and ranking multiple clustering models on manifold data sets (cases). Moreover, we introduce a hybrid data clustering algorithm which combines a particle swarm optimization (PSO) algorithm with a K-means clustering algorithm. Finally, a clustering comparison with regard to both external and internal evaluation indicators is another contribution of this paper. Six clustering methods are compared based on five evaluation measures. The results of comparative experiments on ten data sets indicate the effectiveness of the proposed hybrid clustering method. More importantly, the experimental results vividly demonstrate the effectiveness of the group MCDM-based evaluation on clustering model selection. (C) 2019 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-22662S" target="_blank" >GA17-22662S: Modely vícekriteriálního rozhodování: nové metody odhadu vah a hybridní přístupy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
Prosinec
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000489189900014
EID výsledku v databázi Scopus
—