Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251927" target="_blank" >RIV/61989100:27240/22:10251927 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s44196-022-00114-4" target="_blank" >https://link.springer.com/article/10.1007/s44196-022-00114-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s44196-022-00114-4" target="_blank" >10.1007/s44196-022-00114-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery

  • Popis výsledku v původním jazyce

    In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay&apos;s model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay&apos;s model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon&apos;s test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.

  • Název v anglickém jazyce

    On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery

  • Popis výsledku anglicky

    In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay&apos;s model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay&apos;s model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon&apos;s test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Computational Intelligence Systems

  • ISSN

    1875-6891

  • e-ISSN

    1875-6883

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    22

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000838652500002

  • EID výsledku v databázi Scopus