On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251927" target="_blank" >RIV/61989100:27240/22:10251927 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s44196-022-00114-4" target="_blank" >https://link.springer.com/article/10.1007/s44196-022-00114-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s44196-022-00114-4" target="_blank" >10.1007/s44196-022-00114-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery
Popis výsledku v původním jazyce
In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay's model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay's model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon's test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.
Název v anglickém jazyce
On a Novel Hybrid Manta Ray Foraging Optimizer and Its Application on Parameters Estimation of Lithium-Ion Battery
Popis výsledku anglicky
In this paper, we propose a hybrid meta-heuristic algorithm called MRFO-PSO that hybridizes the Manta ray foraging optimization (MRFO) and particle swarm optimization (PSO) with the aim to balance the exploration and exploitation abilities. In the MRFO-PSO, the concept of velocity of the PSO is incorporated to guide the searching process of the MRFO, where the velocity is updated by the first best and the second-best solutions. By this integration, the balancing issue between the exploration phase and exploitation ability has been further improved. To illustrate the robustness and effectiveness of the MRFO-PSO, it is tested on 23 benchmark equations and it is applied to estimate the parameters of Tremblay's model with three different commercial lithium-ion batteries including the Samsung Cylindrical ICR18650-22 lithium-ion rechargeable battery, Tenergy 30209 prismatic cell, Ultralife UBBL03 (type LI-7) rechargeable battery. The study contribution exclusively utilizes hybrid machine learning-based tuning for Tremblay's model parameters to overcome the disadvantages of human-based tuning. In addition, the comparisons of the MRFO-PSO with six recent meta-heuristic methods are performed in terms of some statistical metrics and Wilcoxon's test-based non-parametric test. As a result, the conducted performance measures have confirmed the competitive results as well as the superiority of the proposed MRFO-PSO.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computational Intelligence Systems
ISSN
1875-6891
e-ISSN
1875-6883
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
22
Strana od-do
nestrankovano
Kód UT WoS článku
000838652500002
EID výsledku v databázi Scopus
—