Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251981" target="_blank" >RIV/61989100:27240/22:10251981 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/20/3772" target="_blank" >https://www.mdpi.com/2227-7390/10/20/3772</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10203772" target="_blank" >10.3390/math10203772</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice
Popis výsledku v původním jazyce
In recent years, the issue of maximizing submodular functions has attracted much interest from research communities. However, most submodular functions are specified in a set function. Meanwhile, recent advancements have been studied for maximizing a diminishing return submodular (DR-submodular) function on the integer lattice. Because plenty of publications show that the DR-submodular function has wide applications in optimization problems such as sensor placement impose problems, optimal budget allocation, social network, and especially machine learning. In this research, we propose two main streaming algorithms for the problem of maximizing a monotone DR-submodular function under cardinality constraints. Our two algorithms, which are called StrDRS1 and StrDRS2, have (1/2 - epsilon) , (1 - 1 /e - epsilon) of approximation ratios and O(n/epsilon log(log B/epsilon ) log k), O(n/epsilon log B), respectively. We conducted several experiments to investigate the performance of our algorithms based on the budget allocation problem over the bipartite influence model, an instance of the monotone submodular function maximization problem over the integer lattice. The experimental results indicate that our proposed algorithms not only provide solutions with a high value of the objective function, but also outperform the state-of-the-art algorithms in terms of both the number of queries and the running time.
Název v anglickém jazyce
Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice
Popis výsledku anglicky
In recent years, the issue of maximizing submodular functions has attracted much interest from research communities. However, most submodular functions are specified in a set function. Meanwhile, recent advancements have been studied for maximizing a diminishing return submodular (DR-submodular) function on the integer lattice. Because plenty of publications show that the DR-submodular function has wide applications in optimization problems such as sensor placement impose problems, optimal budget allocation, social network, and especially machine learning. In this research, we propose two main streaming algorithms for the problem of maximizing a monotone DR-submodular function under cardinality constraints. Our two algorithms, which are called StrDRS1 and StrDRS2, have (1/2 - epsilon) , (1 - 1 /e - epsilon) of approximation ratios and O(n/epsilon log(log B/epsilon ) log k), O(n/epsilon log B), respectively. We conducted several experiments to investigate the performance of our algorithms based on the budget allocation problem over the bipartite influence model, an instance of the monotone submodular function maximization problem over the integer lattice. The experimental results indicate that our proposed algorithms not only provide solutions with a high value of the objective function, but also outperform the state-of-the-art algorithms in terms of both the number of queries and the running time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
nestrankovano
Kód UT WoS článku
000875226800001
EID výsledku v databázi Scopus
—