Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251981" target="_blank" >RIV/61989100:27240/22:10251981 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/10/20/3772" target="_blank" >https://www.mdpi.com/2227-7390/10/20/3772</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10203772" target="_blank" >10.3390/math10203772</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice

  • Popis výsledku v původním jazyce

    In recent years, the issue of maximizing submodular functions has attracted much interest from research communities. However, most submodular functions are specified in a set function. Meanwhile, recent advancements have been studied for maximizing a diminishing return submodular (DR-submodular) function on the integer lattice. Because plenty of publications show that the DR-submodular function has wide applications in optimization problems such as sensor placement impose problems, optimal budget allocation, social network, and especially machine learning. In this research, we propose two main streaming algorithms for the problem of maximizing a monotone DR-submodular function under cardinality constraints. Our two algorithms, which are called StrDRS1 and StrDRS2, have (1/2 - epsilon) , (1 - 1 /e - epsilon) of approximation ratios and O(n/epsilon log(log B/epsilon ) log k), O(n/epsilon log B), respectively. We conducted several experiments to investigate the performance of our algorithms based on the budget allocation problem over the bipartite influence model, an instance of the monotone submodular function maximization problem over the integer lattice. The experimental results indicate that our proposed algorithms not only provide solutions with a high value of the objective function, but also outperform the state-of-the-art algorithms in terms of both the number of queries and the running time.

  • Název v anglickém jazyce

    Efficient Streaming Algorithms for Maximizing Monotone DR-Submodular Function on the Integer Lattice

  • Popis výsledku anglicky

    In recent years, the issue of maximizing submodular functions has attracted much interest from research communities. However, most submodular functions are specified in a set function. Meanwhile, recent advancements have been studied for maximizing a diminishing return submodular (DR-submodular) function on the integer lattice. Because plenty of publications show that the DR-submodular function has wide applications in optimization problems such as sensor placement impose problems, optimal budget allocation, social network, and especially machine learning. In this research, we propose two main streaming algorithms for the problem of maximizing a monotone DR-submodular function under cardinality constraints. Our two algorithms, which are called StrDRS1 and StrDRS2, have (1/2 - epsilon) , (1 - 1 /e - epsilon) of approximation ratios and O(n/epsilon log(log B/epsilon ) log k), O(n/epsilon log B), respectively. We conducted several experiments to investigate the performance of our algorithms based on the budget allocation problem over the bipartite influence model, an instance of the monotone submodular function maximization problem over the integer lattice. The experimental results indicate that our proposed algorithms not only provide solutions with a high value of the objective function, but also outperform the state-of-the-art algorithms in terms of both the number of queries and the running time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000875226800001

  • EID výsledku v databázi Scopus