Influence Maximization under Fairness Budget Distribution in Online Social Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251903" target="_blank" >RIV/61989100:27240/22:10251903 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/22/4185" target="_blank" >https://www.mdpi.com/2227-7390/10/22/4185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10224185" target="_blank" >10.3390/math10224185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence Maximization under Fairness Budget Distribution in Online Social Networks
Popis výsledku v původním jazyce
In social influence analysis, viral marketing, and other fields, the influence maximization problem is a fundamental one with critical applications and has attracted many researchers in the last decades. This problem asks to find a k-size seed set with the largest expected influence spread size. Our paper studies the problem of fairness budget distribution in influence maximization, aiming to find a seed set of size k fairly disseminated in target communities. Each community has certain lower and upper bounded budgets, and the number of each community's elements is selected into a seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges: strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3). These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling framework. Our algorithms provide a (1/2 - epsilon)-approximation of the optimal solution, and require O(kT log ((8 + 2 epsilon)n ln + 2/delta + ln(nk)/epsilon(2))), O(kT log n/epsilon(2)k), and O(T/epsilon log k/epsilon log n/epsilon(2)k) complexity, respectively. We conducted experiments on real social networks. The result shows that our proposed algorithms are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect to the target communities are larger than those of the state-of-the-art alternatives; there are even cases in which our algorithms reaches 100% coverage with respect to target communities. In addition, our algorithms are feasible and effective even in cases involving big data; in particular, the results of the algorithms guarantee fairness constraints.
Název v anglickém jazyce
Influence Maximization under Fairness Budget Distribution in Online Social Networks
Popis výsledku anglicky
In social influence analysis, viral marketing, and other fields, the influence maximization problem is a fundamental one with critical applications and has attracted many researchers in the last decades. This problem asks to find a k-size seed set with the largest expected influence spread size. Our paper studies the problem of fairness budget distribution in influence maximization, aiming to find a seed set of size k fairly disseminated in target communities. Each community has certain lower and upper bounded budgets, and the number of each community's elements is selected into a seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges: strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3). These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling framework. Our algorithms provide a (1/2 - epsilon)-approximation of the optimal solution, and require O(kT log ((8 + 2 epsilon)n ln + 2/delta + ln(nk)/epsilon(2))), O(kT log n/epsilon(2)k), and O(T/epsilon log k/epsilon log n/epsilon(2)k) complexity, respectively. We conducted experiments on real social networks. The result shows that our proposed algorithms are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect to the target communities are larger than those of the state-of-the-art alternatives; there are even cases in which our algorithms reaches 100% coverage with respect to target communities. In addition, our algorithms are feasible and effective even in cases involving big data; in particular, the results of the algorithms guarantee fairness constraints.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
nestrankovano
Kód UT WoS článku
000887620200001
EID výsledku v databázi Scopus
—