Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence Maximization under Fairness Budget Distribution in Online Social Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251903" target="_blank" >RIV/61989100:27240/22:10251903 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/10/22/4185" target="_blank" >https://www.mdpi.com/2227-7390/10/22/4185</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10224185" target="_blank" >10.3390/math10224185</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence Maximization under Fairness Budget Distribution in Online Social Networks

  • Popis výsledku v původním jazyce

    In social influence analysis, viral marketing, and other fields, the influence maximization problem is a fundamental one with critical applications and has attracted many researchers in the last decades. This problem asks to find a k-size seed set with the largest expected influence spread size. Our paper studies the problem of fairness budget distribution in influence maximization, aiming to find a seed set of size k fairly disseminated in target communities. Each community has certain lower and upper bounded budgets, and the number of each community&apos;s elements is selected into a seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges: strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3). These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling framework. Our algorithms provide a (1/2 - epsilon)-approximation of the optimal solution, and require O(kT log ((8 + 2 epsilon)n ln + 2/delta + ln(nk)/epsilon(2))), O(kT log n/epsilon(2)k), and O(T/epsilon log k/epsilon log n/epsilon(2)k) complexity, respectively. We conducted experiments on real social networks. The result shows that our proposed algorithms are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect to the target communities are larger than those of the state-of-the-art alternatives; there are even cases in which our algorithms reaches 100% coverage with respect to target communities. In addition, our algorithms are feasible and effective even in cases involving big data; in particular, the results of the algorithms guarantee fairness constraints.

  • Název v anglickém jazyce

    Influence Maximization under Fairness Budget Distribution in Online Social Networks

  • Popis výsledku anglicky

    In social influence analysis, viral marketing, and other fields, the influence maximization problem is a fundamental one with critical applications and has attracted many researchers in the last decades. This problem asks to find a k-size seed set with the largest expected influence spread size. Our paper studies the problem of fairness budget distribution in influence maximization, aiming to find a seed set of size k fairly disseminated in target communities. Each community has certain lower and upper bounded budgets, and the number of each community&apos;s elements is selected into a seed set holding these bounds. Nevertheless, resolving this problem encounters two main challenges: strongly influential seed sets might not adhere to the fairness constraint, and it is an NP-hard problem. To address these shortcomings, we propose three algorithms (FBIM1, FBIM2, and FBIM3). These algorithms combine an improved greedy strategy for selecting seeds to ensure maximum coverage with the fairness constraints by generating sampling through a Reverse Influence Sampling framework. Our algorithms provide a (1/2 - epsilon)-approximation of the optimal solution, and require O(kT log ((8 + 2 epsilon)n ln + 2/delta + ln(nk)/epsilon(2))), O(kT log n/epsilon(2)k), and O(T/epsilon log k/epsilon log n/epsilon(2)k) complexity, respectively. We conducted experiments on real social networks. The result shows that our proposed algorithms are highly scalable while satisfying theoretical assurances, and that the coverage ratios with respect to the target communities are larger than those of the state-of-the-art alternatives; there are even cases in which our algorithms reaches 100% coverage with respect to target communities. In addition, our algorithms are feasible and effective even in cases involving big data; in particular, the results of the algorithms guarantee fairness constraints.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    26

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000887620200001

  • EID výsledku v databázi Scopus