CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252181" target="_blank" >RIV/61989100:27240/22:10252181 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21094-5_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21094-5_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21094-5_5" target="_blank" >10.1007/978-3-031-21094-5_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization
Popis výsledku v původním jazyce
Due to the complex topology of the search space, expensive multi-objective evolutionary algorithms (EMOEAs) emphasize enhancing the exploration capability. Many algorithms use ensembles of surrogate models to boost the performance. Generally, the surrogate-based model either works out the solution's fitness by approximating the evaluation function or selects the solution by weighting the uncertainty degree of candidate solutions. This paper proposes a selection operator called Cheap surrogate selection (CSS) for multi-objective problems by utilizing the density probability on a k-dimensional tree. As opposed to the first type of surrogate models, which approximate the objective function, the proposed CSS only estimates the uncertainty of the candidate solutions. As a result, CSS does not require extensive sampling or training. Besides, CSS makes use of neighbors' density and builds the tree with low computational complexity, resulting in an accelerated surrogate process. Moreover, a new EMOEA is proposed by integrating spherical search as the core optimizer with the proposed selection scheme. Over a wide variety of benchmark problems, we show that the proposed method outperforms several state-of-the-art EMOEAs. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization
Popis výsledku anglicky
Due to the complex topology of the search space, expensive multi-objective evolutionary algorithms (EMOEAs) emphasize enhancing the exploration capability. Many algorithms use ensembles of surrogate models to boost the performance. Generally, the surrogate-based model either works out the solution's fitness by approximating the evaluation function or selects the solution by weighting the uncertainty degree of candidate solutions. This paper proposes a selection operator called Cheap surrogate selection (CSS) for multi-objective problems by utilizing the density probability on a k-dimensional tree. As opposed to the first type of surrogate models, which approximate the objective function, the proposed CSS only estimates the uncertainty of the candidate solutions. As a result, CSS does not require extensive sampling or training. Besides, CSS makes use of neighbors' density and builds the tree with low computational complexity, resulting in an accelerated surrogate process. Moreover, a new EMOEA is proposed by integrating spherical search as the core optimizer with the proposed selection scheme. Over a wide variety of benchmark problems, we show that the proposed method outperforms several state-of-the-art EMOEAs. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 13627
ISBN
978-3-031-21093-8
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
54-68
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Maribor
Datum konání akce
17. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—