Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252181" target="_blank" >RIV/61989100:27240/22:10252181 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-21094-5_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21094-5_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-21094-5_5" target="_blank" >10.1007/978-3-031-21094-5_5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization

  • Popis výsledku v původním jazyce

    Due to the complex topology of the search space, expensive multi-objective evolutionary algorithms (EMOEAs) emphasize enhancing the exploration capability. Many algorithms use ensembles of surrogate models to boost the performance. Generally, the surrogate-based model either works out the solution&apos;s fitness by approximating the evaluation function or selects the solution by weighting the uncertainty degree of candidate solutions. This paper proposes a selection operator called Cheap surrogate selection (CSS) for multi-objective problems by utilizing the density probability on a k-dimensional tree. As opposed to the first type of surrogate models, which approximate the objective function, the proposed CSS only estimates the uncertainty of the candidate solutions. As a result, CSS does not require extensive sampling or training. Besides, CSS makes use of neighbors&apos; density and builds the tree with low computational complexity, resulting in an accelerated surrogate process. Moreover, a new EMOEA is proposed by integrating spherical search as the core optimizer with the proposed selection scheme. Over a wide variety of benchmark problems, we show that the proposed method outperforms several state-of-the-art EMOEAs. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    CSS-A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization

  • Popis výsledku anglicky

    Due to the complex topology of the search space, expensive multi-objective evolutionary algorithms (EMOEAs) emphasize enhancing the exploration capability. Many algorithms use ensembles of surrogate models to boost the performance. Generally, the surrogate-based model either works out the solution&apos;s fitness by approximating the evaluation function or selects the solution by weighting the uncertainty degree of candidate solutions. This paper proposes a selection operator called Cheap surrogate selection (CSS) for multi-objective problems by utilizing the density probability on a k-dimensional tree. As opposed to the first type of surrogate models, which approximate the objective function, the proposed CSS only estimates the uncertainty of the candidate solutions. As a result, CSS does not require extensive sampling or training. Besides, CSS makes use of neighbors&apos; density and builds the tree with low computational complexity, resulting in an accelerated surrogate process. Moreover, a new EMOEA is proposed by integrating spherical search as the core optimizer with the proposed selection scheme. Over a wide variety of benchmark problems, we show that the proposed method outperforms several state-of-the-art EMOEAs. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 13627

  • ISBN

    978-3-031-21093-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    54-68

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Maribor

  • Datum konání akce

    17. 11. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku