Evolutionary Echo State Network: evolving reservoirs in the Fourier space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10253425" target="_blank" >RIV/61989100:27240/22:10253425 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9892892" target="_blank" >https://ieeexplore.ieee.org/document/9892892</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN55064.2022.9892892" target="_blank" >10.1109/IJCNN55064.2022.9892892</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Echo State Network: evolving reservoirs in the Fourier space
Popis výsledku v původním jazyce
The Echo State Network (ESN) is a class of Recurrent Neural Network with a large number of hidden-hidden weights (in the so-called reservoir). Canonical ESN and its variations have recently received significant attention due to their remarkable success in the modeling of non-linear dynamical systems. The reservoir is randomly connected with fixed weights that don't change in the learning process. Only the weights from reservoir to output are trained. Since the reservoir is fixed during the training procedure, we may wonder if the computational power of the recurrent structure is fully harnessed. In this article, we propose a new computational model of the ESN type, that represents the reservoir weights in the Fourier space and performs a fine-tuning of these weights applying genetic algorithms in the frequency domain. The main interest is that this procedure will work in a much smaller space compared to the classical ESN, thus providing a dimensionality reduction transformation of the initial method. The proposed technique allows us to exploit the benefits of the large recurrent structure avoiding the training problems of gradient-based method. We provide a detailed experimental study that demonstrates the good performances of our approach with well-known chaotic systems and real-world data.
Název v anglickém jazyce
Evolutionary Echo State Network: evolving reservoirs in the Fourier space
Popis výsledku anglicky
The Echo State Network (ESN) is a class of Recurrent Neural Network with a large number of hidden-hidden weights (in the so-called reservoir). Canonical ESN and its variations have recently received significant attention due to their remarkable success in the modeling of non-linear dynamical systems. The reservoir is randomly connected with fixed weights that don't change in the learning process. Only the weights from reservoir to output are trained. Since the reservoir is fixed during the training procedure, we may wonder if the computational power of the recurrent structure is fully harnessed. In this article, we propose a new computational model of the ESN type, that represents the reservoir weights in the Fourier space and performs a fine-tuning of these weights applying genetic algorithms in the frequency domain. The main interest is that this procedure will work in a much smaller space compared to the classical ESN, thus providing a dimensionality reduction transformation of the initial method. The proposed technique allows us to exploit the benefits of the large recurrent structure avoiding the training problems of gradient-based method. We provide a detailed experimental study that demonstrates the good performances of our approach with well-known chaotic systems and real-world data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-33574K" target="_blank" >GF21-33574K: Celoživotní strojové učení z datových proudů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
ISBN
978-1-72818-671-9
ISSN
2161-4393
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Padua
Datum konání akce
18. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000867070908004