Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253424" target="_blank" >RIV/61989100:27240/23:10253424 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494623004817?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494623004817?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2023.110463" target="_blank" >10.1016/j.asoc.2023.110463</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction
Popis výsledku v původním jazyce
From one side, Evolutionary Algorithms have enabled enormous progress over the last years in the optimization field. They have been applied to a variety of problems, including optimization of Neural Networks' architectures. On the other side, the Echo State Network (ESN) model has become increasingly popular in time series prediction, for instance when modeling chaotic sequences. The network has numerous hidden neurons forming a recurrent topology, so-called reservoir, which is fixed during the learning process. Initial reservoir design has mostly been made by human experts; as a consequence, it is prone to errors and bias, and it is a time consuming task. In this paper, we introduce an automatic general neuroevolutionary framework for ESNs, on which we develop a computational tool for evolving reservoirs, called EVOlutionary Echo State Network (EvoESN). To increase efficiency, we represent the large matrix of reservoir weights in the Fourier space, where we perform the evolutionary search strategy. This frequency space has major advantages compared with the original weight space. After updating the Fourier coefficients, we go back to the weight space and perform a conventional training phase for full setting the reservoir architecture. We analyze the evolutionary search employing genetic algorithms and particle swarm optimization, obtaining promising results with the latter over three well-known chaotic time series. The proposed framework leads fast to very good results compared with modern ESN models. Hence, this contribution positions an important family of recurrent systems in the promising neuroevolutionary domain.& COPY; 2023 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction
Popis výsledku anglicky
From one side, Evolutionary Algorithms have enabled enormous progress over the last years in the optimization field. They have been applied to a variety of problems, including optimization of Neural Networks' architectures. On the other side, the Echo State Network (ESN) model has become increasingly popular in time series prediction, for instance when modeling chaotic sequences. The network has numerous hidden neurons forming a recurrent topology, so-called reservoir, which is fixed during the learning process. Initial reservoir design has mostly been made by human experts; as a consequence, it is prone to errors and bias, and it is a time consuming task. In this paper, we introduce an automatic general neuroevolutionary framework for ESNs, on which we develop a computational tool for evolving reservoirs, called EVOlutionary Echo State Network (EvoESN). To increase efficiency, we represent the large matrix of reservoir weights in the Fourier space, where we perform the evolutionary search strategy. This frequency space has major advantages compared with the original weight space. After updating the Fourier coefficients, we go back to the weight space and perform a conventional training phase for full setting the reservoir architecture. We analyze the evolutionary search employing genetic algorithms and particle swarm optimization, obtaining promising results with the latter over three well-known chaotic time series. The proposed framework leads fast to very good results compared with modern ESN models. Hence, this contribution positions an important family of recurrent systems in the promising neuroevolutionary domain.& COPY; 2023 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-33574K" target="_blank" >GF21-33574K: Celoživotní strojové učení z datových proudů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
144
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001054625900001
EID výsledku v databázi Scopus
2-s2.0-85162172245