Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253424" target="_blank" >RIV/61989100:27240/23:10253424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494623004817?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494623004817?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2023.110463" target="_blank" >10.1016/j.asoc.2023.110463</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction

  • Popis výsledku v původním jazyce

    From one side, Evolutionary Algorithms have enabled enormous progress over the last years in the optimization field. They have been applied to a variety of problems, including optimization of Neural Networks&apos; architectures. On the other side, the Echo State Network (ESN) model has become increasingly popular in time series prediction, for instance when modeling chaotic sequences. The network has numerous hidden neurons forming a recurrent topology, so-called reservoir, which is fixed during the learning process. Initial reservoir design has mostly been made by human experts; as a consequence, it is prone to errors and bias, and it is a time consuming task. In this paper, we introduce an automatic general neuroevolutionary framework for ESNs, on which we develop a computational tool for evolving reservoirs, called EVOlutionary Echo State Network (EvoESN). To increase efficiency, we represent the large matrix of reservoir weights in the Fourier space, where we perform the evolutionary search strategy. This frequency space has major advantages compared with the original weight space. After updating the Fourier coefficients, we go back to the weight space and perform a conventional training phase for full setting the reservoir architecture. We analyze the evolutionary search employing genetic algorithms and particle swarm optimization, obtaining promising results with the latter over three well-known chaotic time series. The proposed framework leads fast to very good results compared with modern ESN models. Hence, this contribution positions an important family of recurrent systems in the promising neuroevolutionary domain.&amp; COPY; 2023 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Evolutionary Echo State Network: A neuroevolutionary framework for time series prediction

  • Popis výsledku anglicky

    From one side, Evolutionary Algorithms have enabled enormous progress over the last years in the optimization field. They have been applied to a variety of problems, including optimization of Neural Networks&apos; architectures. On the other side, the Echo State Network (ESN) model has become increasingly popular in time series prediction, for instance when modeling chaotic sequences. The network has numerous hidden neurons forming a recurrent topology, so-called reservoir, which is fixed during the learning process. Initial reservoir design has mostly been made by human experts; as a consequence, it is prone to errors and bias, and it is a time consuming task. In this paper, we introduce an automatic general neuroevolutionary framework for ESNs, on which we develop a computational tool for evolving reservoirs, called EVOlutionary Echo State Network (EvoESN). To increase efficiency, we represent the large matrix of reservoir weights in the Fourier space, where we perform the evolutionary search strategy. This frequency space has major advantages compared with the original weight space. After updating the Fourier coefficients, we go back to the weight space and perform a conventional training phase for full setting the reservoir architecture. We analyze the evolutionary search employing genetic algorithms and particle swarm optimization, obtaining promising results with the latter over three well-known chaotic time series. The proposed framework leads fast to very good results compared with modern ESN models. Hence, this contribution positions an important family of recurrent systems in the promising neuroevolutionary domain.&amp; COPY; 2023 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-33574K" target="_blank" >GF21-33574K: Celoživotní strojové učení z datových proudů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    001054625900001

  • EID výsledku v databázi Scopus

    2-s2.0-85162172245