A Hybrid Approach Based on Particle Swarm Optimization for Echo State Network Initialization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099058" target="_blank" >RIV/61989100:27240/15:86099058 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7379636" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7379636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2015.504" target="_blank" >10.1109/SMC.2015.504</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Hybrid Approach Based on Particle Swarm Optimization for Echo State Network Initialization
Popis výsledku v původním jazyce
Echo state networks (ESNs) fulfill considerable promises for topology fine-Tuning in supervised training. However the randomness of the setting of ESN weights initialization affects badly the learning performance. On the other side, Particle Swarm Optimization (PSO) has proven its efficiency as an optimization tool to puzzle out optimal solutions in complex space. In this work, we present an ESN architecture to which we associate a PSO algorithm to pre-Train the weights within the network layers. A random distribution of the weights matrices is firstly performed. Then, these weights are pre-Trained in order to fit the application requirements. Once optimized, they are re-injected into the ESN model which, in its turn, undergoes a training process followed by a test phase. A comparison between the network performances before and after optimization process is performed. Empirical results show a reduction of learning errors in the case of PSO use. (C) 2015 IEEE.
Název v anglickém jazyce
A Hybrid Approach Based on Particle Swarm Optimization for Echo State Network Initialization
Popis výsledku anglicky
Echo state networks (ESNs) fulfill considerable promises for topology fine-Tuning in supervised training. However the randomness of the setting of ESN weights initialization affects badly the learning performance. On the other side, Particle Swarm Optimization (PSO) has proven its efficiency as an optimization tool to puzzle out optimal solutions in complex space. In this work, we present an ESN architecture to which we associate a PSO algorithm to pre-Train the weights within the network layers. A random distribution of the weights matrices is firstly performed. Then, these weights are pre-Trained in order to fit the application requirements. Once optimized, they are re-injected into the ESN model which, in its turn, undergoes a training process followed by a test phase. A comparison between the network performances before and after optimization process is performed. Empirical results show a reduction of learning errors in the case of PSO use. (C) 2015 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2015 IEEE International Conference On Systems, Man And Cybernetics (Smc 2015) : Big Data Analytics For Human-Centric Systems
ISBN
978-1-4799-8696-5
ISSN
1062-922X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
2896-2901
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Hong Kong
Datum konání akce
9. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000368940202170