Efficient Text Classification with Echo State Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00542211" target="_blank" >RIV/67985807:_____/21:00542211 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IJCNN52387.2021.9533958" target="_blank" >http://dx.doi.org/10.1109/IJCNN52387.2021.9533958</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN52387.2021.9533958" target="_blank" >10.1109/IJCNN52387.2021.9533958</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Text Classification with Echo State Networks
Popis výsledku v původním jazyce
We consider echo state networks (ESNs) for text classification. More specifically, we investigate the learning capabilities of ESNs with pre-trained word embedding as input features, trained on the IMDb and TREC sentiment and question classification datasets, respectively. First, we introduce a customized training paradigm for the processing of multiple input time series (the inputs texts) associated with categorical targets (their corresponding classes). For sentiment tasks, we use an additional frozen attention mechanism which is based on an external lexicon, and hence requires only negligible computational cost. Within this paradigm, ESNs can be trained in tens of seconds on a GPU. We show that ESNs significantly outperform their Ridge regression baselines provided with the same embedded features. ESNs also compete with classical Bi-LSTM networks while keeping a training time of up to 23 times faster. These results show that ESNs can be considered as robust, efficient and fast candidates for text classification tasks. Overall, this study falls within the context of light and fast-to-train models for NLP.
Název v anglickém jazyce
Efficient Text Classification with Echo State Networks
Popis výsledku anglicky
We consider echo state networks (ESNs) for text classification. More specifically, we investigate the learning capabilities of ESNs with pre-trained word embedding as input features, trained on the IMDb and TREC sentiment and question classification datasets, respectively. First, we introduce a customized training paradigm for the processing of multiple input time series (the inputs texts) associated with categorical targets (their corresponding classes). For sentiment tasks, we use an additional frozen attention mechanism which is based on an external lexicon, and hence requires only negligible computational cost. Within this paradigm, ESNs can be trained in tens of seconds on a GPU. We show that ESNs significantly outperform their Ridge regression baselines provided with the same embedded features. ESNs also compete with classical Bi-LSTM networks while keeping a training time of up to 23 times faster. These results show that ESNs can be considered as robust, efficient and fast candidates for text classification tasks. Overall, this study falls within the context of light and fast-to-train models for NLP.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IJCNN 2021. The International Joint Conference on Neural Networks Proceedings
ISBN
978-0-7381-3366-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Virtual
Datum konání akce
18. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000722581705038