Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10251770" target="_blank" >RIV/61989100:27240/23:10251770 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10251770
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1110016822008419" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1110016822008419</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aej.2022.12.057" target="_blank" >10.1016/j.aej.2022.12.057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal
Popis výsledku v původním jazyce
The energy efficiency of port container terminal equipment and the reduction of CO2 emissions are among one of the biggest challenges facing every seaport in the world. The article pre-sents the modeling of the container transportation process in a terminal from the quay crane to the stack using battery-powered Automated Guided Vehicle (AGV) to estimate the energy consump-tion parameters. An AGV speed control algorithm based on Deep Reinforcement Learning (DRL) is proposed to optimize the energy consumption of container transportation. The results obtained and compared with real transportation measurements showed that the proposed DRL-based approach dynamically changing the driving speed of the AGV reduces energy consumption by 4.6%. The obtained results of the research provide the prerequisites for further research in order to find optimal strategies for autonomous vehicle movement including context awareness and infor-mation sharing with other vehicles in the terminal.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
Název v anglickém jazyce
Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal
Popis výsledku anglicky
The energy efficiency of port container terminal equipment and the reduction of CO2 emissions are among one of the biggest challenges facing every seaport in the world. The article pre-sents the modeling of the container transportation process in a terminal from the quay crane to the stack using battery-powered Automated Guided Vehicle (AGV) to estimate the energy consump-tion parameters. An AGV speed control algorithm based on Deep Reinforcement Learning (DRL) is proposed to optimize the energy consumption of container transportation. The results obtained and compared with real transportation measurements showed that the proposed DRL-based approach dynamically changing the driving speed of the AGV reduces energy consumption by 4.6%. The obtained results of the research provide the prerequisites for further research in order to find optimal strategies for autonomous vehicle movement including context awareness and infor-mation sharing with other vehicles in the terminal.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Alexandria Engineering Journal
ISSN
1110-0168
e-ISSN
2090-2670
Svazek periodika
67
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
397-407
Kód UT WoS článku
000918221700001
EID výsledku v databázi Scopus
—