Comparison of the speedy estimate methods of the induction motors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10251986" target="_blank" >RIV/61989100:27240/23:10251986 - isvavai.cz</a>
Výsledek na webu
<a href="http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/24089" target="_blank" >http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/24089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12928/TELKOMNIKA.v21i1.24089" target="_blank" >10.12928/TELKOMNIKA.v21i1.24089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of the speedy estimate methods of the induction motors
Popis výsledku v původním jazyce
This paper deals with a novel method to achieve the effective performance of the extended Kalman filter (EKF) for the speedy estimate of an induction motor. The real coding genetic algorithm (GA) is used to optimize the components of the covariance matrix in the EKF, thus ensuring the stability and accuracy of the filter in the speed estimation. The advantage of the proposed method is less dependent on the parameters of the induction motor. The content includes the vector control model for induction motor, the speed estimation by modeling the reference frame-model reference adaptive system (RF-MRAS), the current based-model reference adaptive system (CB-MRAS), and the speed estimation with the EKF optimized by genetic algorithm. Simulative studies on the field-oriented controller (FOC) with different operating conditions are performed in Matlab Simulink when the rotor resistance changes in the current speed estimation methods. The simulation results demonstrate the efficiency of the proposed GA-EKF filter compared with other speed estimation methods of induction motors.
Název v anglickém jazyce
Comparison of the speedy estimate methods of the induction motors
Popis výsledku anglicky
This paper deals with a novel method to achieve the effective performance of the extended Kalman filter (EKF) for the speedy estimate of an induction motor. The real coding genetic algorithm (GA) is used to optimize the components of the covariance matrix in the EKF, thus ensuring the stability and accuracy of the filter in the speed estimation. The advantage of the proposed method is less dependent on the parameters of the induction motor. The content includes the vector control model for induction motor, the speed estimation by modeling the reference frame-model reference adaptive system (RF-MRAS), the current based-model reference adaptive system (CB-MRAS), and the speed estimation with the EKF optimized by genetic algorithm. Simulative studies on the field-oriented controller (FOC) with different operating conditions are performed in Matlab Simulink when the rotor resistance changes in the current speed estimation methods. The simulation results demonstrate the efficiency of the proposed GA-EKF filter compared with other speed estimation methods of induction motors.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Telkomnika
ISSN
1693-6930
e-ISSN
2087-278X
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ID - Indonéská republika
Počet stran výsledku
12
Strana od-do
223-234
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85143848913