Sensor Clustering Using a K-Means Algorithm in Combination with Optimized Unmanned Aerial Vehicle Trajectory in Wireless Sensor Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252229" target="_blank" >RIV/61989100:27240/23:10252229 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10252229
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/23/4/2345" target="_blank" >https://www.mdpi.com/1424-8220/23/4/2345</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23042345" target="_blank" >10.3390/s23042345</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensor Clustering Using a K-Means Algorithm in Combination with Optimized Unmanned Aerial Vehicle Trajectory in Wireless Sensor Networks
Popis výsledku v původním jazyce
We examine a general wireless sensor network (WSN) model which incorporates a large number of sensors distributed over a large and complex geographical area. The study proposes solutions for a flexible deployment, low cost and high reliability in a wireless sensor network. To achieve these aims, we propose the application of an unmanned aerial vehicle (UAV) as a flying relay to receive and forward signals that employ nonorthogonal multiple access (NOMA) for a high spectral sharing efficiency. To obtain an optimal number of subclusters and optimal UAV positioning, we apply a sensor clustering method based on K-means unsupervised machine learning in combination with the gap statistic method. The study proposes an algorithm to optimize the trajectory of the UAV, i.e., the centroid-to-next-nearest-centroid (CNNC) path. Because a subcluster containing multiple sensors produces cochannel interference which affects the signal decoding performance at the UAV, we propose a diagonal matrix as a phase-shift framework at the UAV to separate and decode the messages received from the sensors. The study examines the outage probability performance of an individual WSN and provides results based on Monte Carlo simulations and analyses. The investigated results verified the benefits of the K-means algorithm in deploying the WSN.
Název v anglickém jazyce
Sensor Clustering Using a K-Means Algorithm in Combination with Optimized Unmanned Aerial Vehicle Trajectory in Wireless Sensor Networks
Popis výsledku anglicky
We examine a general wireless sensor network (WSN) model which incorporates a large number of sensors distributed over a large and complex geographical area. The study proposes solutions for a flexible deployment, low cost and high reliability in a wireless sensor network. To achieve these aims, we propose the application of an unmanned aerial vehicle (UAV) as a flying relay to receive and forward signals that employ nonorthogonal multiple access (NOMA) for a high spectral sharing efficiency. To obtain an optimal number of subclusters and optimal UAV positioning, we apply a sensor clustering method based on K-means unsupervised machine learning in combination with the gap statistic method. The study proposes an algorithm to optimize the trajectory of the UAV, i.e., the centroid-to-next-nearest-centroid (CNNC) path. Because a subcluster containing multiple sensors produces cochannel interference which affects the signal decoding performance at the UAV, we propose a diagonal matrix as a phase-shift framework at the UAV to separate and decode the messages received from the sensors. The study examines the outage probability performance of an individual WSN and provides results based on Monte Carlo simulations and analyses. The investigated results verified the benefits of the K-means algorithm in deploying the WSN.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-3210
e-ISSN
1424-8220
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000942063700001
EID výsledku v databázi Scopus
—