A innovative wavelet transformation method optimization in the noise-canceling application within intelligent building occupancy detection monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252466" target="_blank" >RIV/61989100:27240/23:10252466 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cell.com/heliyon/fulltext/S2405-8440(23)03321-2" target="_blank" >https://www.cell.com/heliyon/fulltext/S2405-8440(23)03321-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2023.e16114" target="_blank" >10.1016/j.heliyon.2023.e16114</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A innovative wavelet transformation method optimization in the noise-canceling application within intelligent building occupancy detection monitoring
Popis výsledku v původním jazyce
The study deals with detection of the occupation of Intelligent Building (IB) using data obtained from indirect methods with Big Data Analysis within IoT. In the area of daily living activity monitoring, one of the most challenging tasks is occupancy prediction, giving us information about people's mobility in the building. This task can be done via monitoring of CO2 as a reliable method, which has the ambition to predict the presence of the people in specific areas. In this paper, we propose a novel hybrid system, which is based on the Support Vector Machine (SVM) prediction of the CO2 waveform with the use of sensors that measure indoor/outdoor temperature and relative humidity. For each such prediction, we also record the gold standard CO2 signal to objectively compare and evaluate the quality of the proposed system. Unfortunately, this prediction is often linked with a presence of predicted signal activities in the form of glitches, often having an oscillating character, which inaccurately approximates the real CO2 signals. Thus, the difference between the gold standard and the prediction results from SVM is increasing. Therefore, we employed as the second part of the proposed system a smoothing procedure based on Wavelet transformation, which has ambitions to reduce inaccuracies in predicted signal via smoothing and increase the accuracy of the whole prediction system. The whole system is completed with an optimization procedure based on the Artificial Bee Colony (ABC) algorithm, which finally classifies the wavelet's response to recommend the most suitable wavelet settings to be used for data smoothing. (C) 2023 The Author(s)
Název v anglickém jazyce
A innovative wavelet transformation method optimization in the noise-canceling application within intelligent building occupancy detection monitoring
Popis výsledku anglicky
The study deals with detection of the occupation of Intelligent Building (IB) using data obtained from indirect methods with Big Data Analysis within IoT. In the area of daily living activity monitoring, one of the most challenging tasks is occupancy prediction, giving us information about people's mobility in the building. This task can be done via monitoring of CO2 as a reliable method, which has the ambition to predict the presence of the people in specific areas. In this paper, we propose a novel hybrid system, which is based on the Support Vector Machine (SVM) prediction of the CO2 waveform with the use of sensors that measure indoor/outdoor temperature and relative humidity. For each such prediction, we also record the gold standard CO2 signal to objectively compare and evaluate the quality of the proposed system. Unfortunately, this prediction is often linked with a presence of predicted signal activities in the form of glitches, often having an oscillating character, which inaccurately approximates the real CO2 signals. Thus, the difference between the gold standard and the prediction results from SVM is increasing. Therefore, we employed as the second part of the proposed system a smoothing procedure based on Wavelet transformation, which has ambitions to reduce inaccuracies in predicted signal via smoothing and increase the accuracy of the whole prediction system. The whole system is completed with an optimization procedure based on the Artificial Bee Colony (ABC) algorithm, which finally classifies the wavelet's response to recommend the most suitable wavelet settings to be used for data smoothing. (C) 2023 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
9
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
001040834100001
EID výsledku v databázi Scopus
2-s2.0-85159473892