DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252543" target="_blank" >RIV/61989100:27240/23:10252543 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-023-29170-2" target="_blank" >https://www.nature.com/articles/s41598-023-29170-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-023-29170-2" target="_blank" >10.1038/s41598-023-29170-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system
Popis výsledku v původním jazyce
Industrial Internet of Things (IIoT) is the new paradigm to perform different healthcare applications with different services in daily life. Healthcare applications based on IIoT paradigm are widely used to track patients health status using remote healthcare technologies. Complex biomedical sensors exploit wireless technologies, and remote services in terms of industrial workflow applications to perform different healthcare tasks, such as like heartbeat, blood pressure and others. However, existing industrial healthcare technoloiges still has to deal with many problems, such as security, task scheduling, and the cost of processing tasks in IIoT based healthcare paradigms. This paper proposes a new solution to the above-mentioned issues and presents the deep reinforcement learning-aware blockchain-based task scheduling (DRLBTS) algorithm framework with different goals. DRLBTS provides security and makespan efficient scheduling for the healthcare applications. Then, it shares secure and valid data between connected network nodes after the initial assignment and data validation. Statistical results show that DRLBTS is adaptive and meets the security, privacy, and makespan requirements of healthcare applications in the distributed network.
Název v anglickém jazyce
DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system
Popis výsledku anglicky
Industrial Internet of Things (IIoT) is the new paradigm to perform different healthcare applications with different services in daily life. Healthcare applications based on IIoT paradigm are widely used to track patients health status using remote healthcare technologies. Complex biomedical sensors exploit wireless technologies, and remote services in terms of industrial workflow applications to perform different healthcare tasks, such as like heartbeat, blood pressure and others. However, existing industrial healthcare technoloiges still has to deal with many problems, such as security, task scheduling, and the cost of processing tasks in IIoT based healthcare paradigms. This paper proposes a new solution to the above-mentioned issues and presents the deep reinforcement learning-aware blockchain-based task scheduling (DRLBTS) algorithm framework with different goals. DRLBTS provides security and makespan efficient scheduling for the healthcare applications. Then, it shares secure and valid data between connected network nodes after the initial assignment and data validation. Statistical results show that DRLBTS is adaptive and meets the security, privacy, and makespan requirements of healthcare applications in the distributed network.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000988825800045
EID výsledku v databázi Scopus
—