Restricted Boltzmann machine Assisted Secure Serverless Edge System for Internet of Medical Things
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10251455" target="_blank" >RIV/61989100:27240/23:10251455 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85131740372&origin=resultslist&sort=plf-f" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85131740372&origin=resultslist&sort=plf-f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JBHI.2022.3178660" target="_blank" >10.1109/JBHI.2022.3178660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restricted Boltzmann machine Assisted Secure Serverless Edge System for Internet of Medical Things
Popis výsledku v původním jazyce
The Internet of things (IoT) is a network of technologies that support a wide variety of healthcare workflow applications to facilitate users' obtaining real-time healthcare services. Many patients and doctors' hospitals use different healthcare services to monitor their healthcare and save their records on the servers. Healthcare sensors are widely linked to the outside world for different disease classifications and questions. These applications are extraordinarily dynamic and use mobile devices to roam several locales. However, healthcare apps confront two significant challenges: data privacy and the cost of application execution services. This work presents the mobility-aware security dynamic service composition (MSDSC) algorithmic framework for workflow healthcare based on serverless, serverless, and restricted Boltzmann machine mechanisms. The study suggests the stochastic deep neural network trains probabilistic models at each phase of the process, including service composition, task sequencing, security, and scheduling. The experimental setup and findings revealed that the developed system-based methods outperform traditional methods by 25% in terms of safety and 35% in application cost. IEEE
Název v anglickém jazyce
Restricted Boltzmann machine Assisted Secure Serverless Edge System for Internet of Medical Things
Popis výsledku anglicky
The Internet of things (IoT) is a network of technologies that support a wide variety of healthcare workflow applications to facilitate users' obtaining real-time healthcare services. Many patients and doctors' hospitals use different healthcare services to monitor their healthcare and save their records on the servers. Healthcare sensors are widely linked to the outside world for different disease classifications and questions. These applications are extraordinarily dynamic and use mobile devices to roam several locales. However, healthcare apps confront two significant challenges: data privacy and the cost of application execution services. This work presents the mobility-aware security dynamic service composition (MSDSC) algorithmic framework for workflow healthcare based on serverless, serverless, and restricted Boltzmann machine mechanisms. The study suggests the stochastic deep neural network trains probabilistic models at each phase of the process, including service composition, task sequencing, security, and scheduling. The experimental setup and findings revealed that the developed system-based methods outperform traditional methods by 25% in terms of safety and 35% in application cost. IEEE
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Biomedical and Health Informatics
ISSN
2168-2194
e-ISSN
2168-2208
Svazek periodika
27
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
673-683
Kód UT WoS článku
000943693600013
EID výsledku v databázi Scopus
2-s2.0-85131740372