Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255229" target="_blank" >RIV/61989100:27240/24:10255229 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10602504" target="_blank" >https://ieeexplore.ieee.org/document/10602504</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSYST.2024.3424259" target="_blank" >10.1109/JSYST.2024.3424259</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows

  • Popis výsledku v původním jazyce

    Digital healthcare has garnered much attention from academia and industry for health and well-being. Many digital healthcare architectures based on large-scale edge and cloud multiagent systems (LSMASs) have recently been presented. The LSMAS allows agents from different institutions to work together to achieve healthcare processing goals for users. This article presents a digital twin large-scale multiagent strategy (DT-LSMAS) comprising mobile, edge, and cloud agents. The DT-LSMAS comprised different schemes for healthcare workflows, such as added healthcare workflows, application partitioning, and scheduling. We consider healthcare workflows with different biosensor data such as heartbeat, blood pressure, glucose monitoring, and other healthcare tasks. We partitioned workflows into mobile, edge, and cloud agents to meet the deadline, total time, and security of workflows in large-scale edge and cloud nodes. To handle the large-scale resource for real-time sensor data, we suggested digital twin-enabled edge nodes, where delay-sensitive workflow tasks are scheduled and executed under their quality of service requirements. Simulation results show that the DT-LSMAS outperformed in terms of total time by 50%, minimizing the risk of resource leakage and deadline missing during scheduling on heterogeneous nodes. In conclusion, the DT-LSMAS obtained optimal results for workflow applications.

  • Název v anglickém jazyce

    DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows

  • Popis výsledku anglicky

    Digital healthcare has garnered much attention from academia and industry for health and well-being. Many digital healthcare architectures based on large-scale edge and cloud multiagent systems (LSMASs) have recently been presented. The LSMAS allows agents from different institutions to work together to achieve healthcare processing goals for users. This article presents a digital twin large-scale multiagent strategy (DT-LSMAS) comprising mobile, edge, and cloud agents. The DT-LSMAS comprised different schemes for healthcare workflows, such as added healthcare workflows, application partitioning, and scheduling. We consider healthcare workflows with different biosensor data such as heartbeat, blood pressure, glucose monitoring, and other healthcare tasks. We partitioned workflows into mobile, edge, and cloud agents to meet the deadline, total time, and security of workflows in large-scale edge and cloud nodes. To handle the large-scale resource for real-time sensor data, we suggested digital twin-enabled edge nodes, where delay-sensitive workflow tasks are scheduled and executed under their quality of service requirements. Simulation results show that the DT-LSMAS outperformed in terms of total time by 50%, minimizing the risk of resource leakage and deadline missing during scheduling on heterogeneous nodes. In conclusion, the DT-LSMAS obtained optimal results for workflow applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Systems Journal

  • ISSN

    1932-8184

  • e-ISSN

    1937-9234

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    July 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001273001200001

  • EID výsledku v databázi Scopus