DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255229" target="_blank" >RIV/61989100:27240/24:10255229 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10602504" target="_blank" >https://ieeexplore.ieee.org/document/10602504</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSYST.2024.3424259" target="_blank" >10.1109/JSYST.2024.3424259</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows
Popis výsledku v původním jazyce
Digital healthcare has garnered much attention from academia and industry for health and well-being. Many digital healthcare architectures based on large-scale edge and cloud multiagent systems (LSMASs) have recently been presented. The LSMAS allows agents from different institutions to work together to achieve healthcare processing goals for users. This article presents a digital twin large-scale multiagent strategy (DT-LSMAS) comprising mobile, edge, and cloud agents. The DT-LSMAS comprised different schemes for healthcare workflows, such as added healthcare workflows, application partitioning, and scheduling. We consider healthcare workflows with different biosensor data such as heartbeat, blood pressure, glucose monitoring, and other healthcare tasks. We partitioned workflows into mobile, edge, and cloud agents to meet the deadline, total time, and security of workflows in large-scale edge and cloud nodes. To handle the large-scale resource for real-time sensor data, we suggested digital twin-enabled edge nodes, where delay-sensitive workflow tasks are scheduled and executed under their quality of service requirements. Simulation results show that the DT-LSMAS outperformed in terms of total time by 50%, minimizing the risk of resource leakage and deadline missing during scheduling on heterogeneous nodes. In conclusion, the DT-LSMAS obtained optimal results for workflow applications.
Název v anglickém jazyce
DT-LSMAS: Digital Twin-Assisted Large-Scale Multiagent System for Healthcare Workflows
Popis výsledku anglicky
Digital healthcare has garnered much attention from academia and industry for health and well-being. Many digital healthcare architectures based on large-scale edge and cloud multiagent systems (LSMASs) have recently been presented. The LSMAS allows agents from different institutions to work together to achieve healthcare processing goals for users. This article presents a digital twin large-scale multiagent strategy (DT-LSMAS) comprising mobile, edge, and cloud agents. The DT-LSMAS comprised different schemes for healthcare workflows, such as added healthcare workflows, application partitioning, and scheduling. We consider healthcare workflows with different biosensor data such as heartbeat, blood pressure, glucose monitoring, and other healthcare tasks. We partitioned workflows into mobile, edge, and cloud agents to meet the deadline, total time, and security of workflows in large-scale edge and cloud nodes. To handle the large-scale resource for real-time sensor data, we suggested digital twin-enabled edge nodes, where delay-sensitive workflow tasks are scheduled and executed under their quality of service requirements. Simulation results show that the DT-LSMAS outperformed in terms of total time by 50%, minimizing the risk of resource leakage and deadline missing during scheduling on heterogeneous nodes. In conclusion, the DT-LSMAS obtained optimal results for workflow applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Systems Journal
ISSN
1932-8184
e-ISSN
1937-9234
Svazek periodika
2024
Číslo periodika v rámci svazku
July 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001273001200001
EID výsledku v databázi Scopus
—