Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253152" target="_blank" >RIV/61989100:27240/23:10253152 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1319157823003014" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157823003014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jksuci.2023.101747" target="_blank" >10.1016/j.jksuci.2023.101747</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks

  • Popis výsledku v původním jazyce

    The Industrial Internet of Healthcare Things (IIoHT) is the emerging paradigm in digital healthcare. Context-aware healthcare sensors, local intelligent watches, healthcare devices, wireless communication technologies, fog, and cloud computing are all parts of the IIoHT used in healthcare. The ubiquitous healthcare services it provides to its users in practice. However, the current IIoHT healthcare frameworks have security and failure issues in mobile fog and cloud networks where they are spread out. This paper presents the secure, fault-tolerant IIoHT Framework based on digital twin (DT) federated learning-enabled fog-cloud models. The DT is an effective technology that makes virtual copies of servers at different locations. DT integrated with federated learning inside the fog and cloud environments, where the failure of tasks and execution improved for healthcare sensor data. The study aims to reduce processing time and the risk of task failure. The study presents the Secure and Fault-Tolerant Strategies (SFTS)-enabled IIoHT framework that optimizes wearable sensor data and executes it with the minimum offloading and processing delays. Simulation results show that the proposed work minimized the security risk by 40%, failure risk of tasks risk by 50%, and the training and testing time by 39% for sensor data during the execution of mobile fog cloud networks. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • Název v anglickém jazyce

    Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks

  • Popis výsledku anglicky

    The Industrial Internet of Healthcare Things (IIoHT) is the emerging paradigm in digital healthcare. Context-aware healthcare sensors, local intelligent watches, healthcare devices, wireless communication technologies, fog, and cloud computing are all parts of the IIoHT used in healthcare. The ubiquitous healthcare services it provides to its users in practice. However, the current IIoHT healthcare frameworks have security and failure issues in mobile fog and cloud networks where they are spread out. This paper presents the secure, fault-tolerant IIoHT Framework based on digital twin (DT) federated learning-enabled fog-cloud models. The DT is an effective technology that makes virtual copies of servers at different locations. DT integrated with federated learning inside the fog and cloud environments, where the failure of tasks and execution improved for healthcare sensor data. The study aims to reduce processing time and the risk of task failure. The study presents the Secure and Fault-Tolerant Strategies (SFTS)-enabled IIoHT framework that optimizes wearable sensor data and executes it with the minimum offloading and processing delays. Simulation results show that the proposed work minimized the security risk by 40%, failure risk of tasks risk by 50%, and the training and testing time by 39% for sensor data during the execution of mobile fog cloud networks. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of King Saud University - Computer and Information Sciences

  • ISSN

    1319-1578

  • e-ISSN

    2213-1248

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    SA - Království Saúdská Arábie

  • Počet stran výsledku

    22

  • Strana od-do

  • Kód UT WoS článku

    001082356800001

  • EID výsledku v databázi Scopus