Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253152" target="_blank" >RIV/61989100:27240/23:10253152 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1319157823003014" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157823003014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jksuci.2023.101747" target="_blank" >10.1016/j.jksuci.2023.101747</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks
Popis výsledku v původním jazyce
The Industrial Internet of Healthcare Things (IIoHT) is the emerging paradigm in digital healthcare. Context-aware healthcare sensors, local intelligent watches, healthcare devices, wireless communication technologies, fog, and cloud computing are all parts of the IIoHT used in healthcare. The ubiquitous healthcare services it provides to its users in practice. However, the current IIoHT healthcare frameworks have security and failure issues in mobile fog and cloud networks where they are spread out. This paper presents the secure, fault-tolerant IIoHT Framework based on digital twin (DT) federated learning-enabled fog-cloud models. The DT is an effective technology that makes virtual copies of servers at different locations. DT integrated with federated learning inside the fog and cloud environments, where the failure of tasks and execution improved for healthcare sensor data. The study aims to reduce processing time and the risk of task failure. The study presents the Secure and Fault-Tolerant Strategies (SFTS)-enabled IIoHT framework that optimizes wearable sensor data and executes it with the minimum offloading and processing delays. Simulation results show that the proposed work minimized the security risk by 40%, failure risk of tasks risk by 50%, and the training and testing time by 39% for sensor data during the execution of mobile fog cloud networks. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Název v anglickém jazyce
Secure-fault-tolerant efficient industrial internet of healthcare things framework based on digital twin federated fog-cloud networks
Popis výsledku anglicky
The Industrial Internet of Healthcare Things (IIoHT) is the emerging paradigm in digital healthcare. Context-aware healthcare sensors, local intelligent watches, healthcare devices, wireless communication technologies, fog, and cloud computing are all parts of the IIoHT used in healthcare. The ubiquitous healthcare services it provides to its users in practice. However, the current IIoHT healthcare frameworks have security and failure issues in mobile fog and cloud networks where they are spread out. This paper presents the secure, fault-tolerant IIoHT Framework based on digital twin (DT) federated learning-enabled fog-cloud models. The DT is an effective technology that makes virtual copies of servers at different locations. DT integrated with federated learning inside the fog and cloud environments, where the failure of tasks and execution improved for healthcare sensor data. The study aims to reduce processing time and the risk of task failure. The study presents the Secure and Fault-Tolerant Strategies (SFTS)-enabled IIoHT framework that optimizes wearable sensor data and executes it with the minimum offloading and processing delays. Simulation results show that the proposed work minimized the security risk by 40%, failure risk of tasks risk by 50%, and the training and testing time by 39% for sensor data during the execution of mobile fog cloud networks. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of King Saud University - Computer and Information Sciences
ISSN
1319-1578
e-ISSN
2213-1248
Svazek periodika
35
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
SA - Království Saúdská Arábie
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001082356800001
EID výsledku v databázi Scopus
—