Independent component analysis algorithms for non-invasive fetal electrocardiography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252576" target="_blank" >RIV/61989100:27240/23:10252576 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286858" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0286858" target="_blank" >10.1371/journal.pone.0286858</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Independent component analysis algorithms for non-invasive fetal electrocardiography
Popis výsledku v původním jazyce
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest. Copyright: (C) 2023 Jaros et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Název v anglickém jazyce
Independent component analysis algorithms for non-invasive fetal electrocardiography
Popis výsledku anglicky
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest. Copyright: (C) 2023 Jaros et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
"e0286858@@@###"
Kód UT WoS článku
001004606500017
EID výsledku v databázi Scopus
2-s2.0-85161200114