Harmonics Signal Feature Extraction Techniques: A Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252680" target="_blank" >RIV/61989100:27240/23:10252680 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/11/8/1877" target="_blank" >https://www.mdpi.com/2227-7390/11/8/1877</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11081877" target="_blank" >10.3390/math11081877</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harmonics Signal Feature Extraction Techniques: A Review
Popis výsledku v původním jazyce
Harmonic estimation is essential for mitigating or suppressing harmonic distortions in power systems. The most important idea is that spectrum analysis, waveform estimation, harmonic source classification, source location, the determination of harmonic source contributions, data clustering, and filter-based harmonic elimination capacity are also considered. The feature extraction method is a fundamental component of the optimization that improves the effectiveness of the Harmonic Mitigation method. In this study, techniques to extract fundamental frequencies and harmonics in the frequency domain, the time domain, and the spatial domain include 67 literature reviews and an overall assessment. The combinations of signal processing with artificial intelligence (AI) techniques are also reviewed and evaluated in this study. The benefit of the feature extraction methods is that the analysis extracts the powerful basic information of the feedback signals from the sensors with the most redundancy, ensuring the highest efficiency for the next sampling process of algorithms. This study provides an overview of the fundamental frequency and harmonic extraction methods of recent years, an analysis, and a presentation of their advantages and limitations.
Název v anglickém jazyce
Harmonics Signal Feature Extraction Techniques: A Review
Popis výsledku anglicky
Harmonic estimation is essential for mitigating or suppressing harmonic distortions in power systems. The most important idea is that spectrum analysis, waveform estimation, harmonic source classification, source location, the determination of harmonic source contributions, data clustering, and filter-based harmonic elimination capacity are also considered. The feature extraction method is a fundamental component of the optimization that improves the effectiveness of the Harmonic Mitigation method. In this study, techniques to extract fundamental frequencies and harmonics in the frequency domain, the time domain, and the spatial domain include 67 literature reviews and an overall assessment. The combinations of signal processing with artificial intelligence (AI) techniques are also reviewed and evaluated in this study. The benefit of the feature extraction methods is that the analysis extracts the powerful basic information of the feedback signals from the sensors with the most redundancy, ensuring the highest efficiency for the next sampling process of algorithms. This study provides an overview of the fundamental frequency and harmonic extraction methods of recent years, an analysis, and a presentation of their advantages and limitations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
36
Strana od-do
—
Kód UT WoS článku
000979064100001
EID výsledku v databázi Scopus
—