An innovative mathematical approach to the evaluation of susceptibility in liver disorder based on fuzzy parameterized complex fuzzy hypersoft set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252759" target="_blank" >RIV/61989100:27240/23:10252759 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1746809423006377" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1746809423006377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2023.105204" target="_blank" >10.1016/j.bspc.2023.105204</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An innovative mathematical approach to the evaluation of susceptibility in liver disorder based on fuzzy parameterized complex fuzzy hypersoft set
Popis výsledku v původním jazyce
Several liver diseases are collectively termed as liver disorder. Usually the diagnosis of a particular disease is accomplished by considering symptoms as parameters but this is not the case for liver disorder due to the involvement of large number of symptoms relating to several diseases. The most suitable approach is to assess the susceptibility of patients for liver disorder by considering the features of relevant laboratory tests as parameters. In this study the characterization and aggregations of novel mathematical model fuzzy parameterized complex fuzzy hypersoft set (FpcFHSS) are utilized to evaluate the susceptibility of patients for liver disorder. This model is capable to cope with uncertain nature of parameters, the classification of parameters into their respective sub-parametric values and the periodicity of data collectively. The five appropriate laboratory test features relevant to liver disorder are considered as parameters and their standard ranges are opted as sub-parametric values. The uncertain nature of sub-parametric tuples is managed by assigning them a fuzzy parameterized degree which is determined with the suitable criteria. Using the matrix aggregations of FpcFHSS, an algorithm is proposed for the assessment of the susceptibility of patients for liver disorder and then validated with the help of real-world multi-attribute decision-making application. The reliability and flexibility of proposed model are discussed by its structural comparison with some pre-developed relevant models. (C) 2023 Elsevier Ltd
Název v anglickém jazyce
An innovative mathematical approach to the evaluation of susceptibility in liver disorder based on fuzzy parameterized complex fuzzy hypersoft set
Popis výsledku anglicky
Several liver diseases are collectively termed as liver disorder. Usually the diagnosis of a particular disease is accomplished by considering symptoms as parameters but this is not the case for liver disorder due to the involvement of large number of symptoms relating to several diseases. The most suitable approach is to assess the susceptibility of patients for liver disorder by considering the features of relevant laboratory tests as parameters. In this study the characterization and aggregations of novel mathematical model fuzzy parameterized complex fuzzy hypersoft set (FpcFHSS) are utilized to evaluate the susceptibility of patients for liver disorder. This model is capable to cope with uncertain nature of parameters, the classification of parameters into their respective sub-parametric values and the periodicity of data collectively. The five appropriate laboratory test features relevant to liver disorder are considered as parameters and their standard ranges are opted as sub-parametric values. The uncertain nature of sub-parametric tuples is managed by assigning them a fuzzy parameterized degree which is determined with the suitable criteria. Using the matrix aggregations of FpcFHSS, an algorithm is proposed for the assessment of the susceptibility of patients for liver disorder and then validated with the help of real-world multi-attribute decision-making application. The reliability and flexibility of proposed model are discussed by its structural comparison with some pre-developed relevant models. (C) 2023 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
SEP 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001031709300001
EID výsledku v databázi Scopus
2-s2.0-85164034960