Towards Rough Set Theory for Outliers Detection in Questionnaire Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253449" target="_blank" >RIV/61989100:27240/23:10253449 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-42823-4_23" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-42823-4_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-42823-4_23" target="_blank" >10.1007/978-3-031-42823-4_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Rough Set Theory for Outliers Detection in Questionnaire Data
Popis výsledku v původním jazyce
Manual processing of questionnaire surveys takes a lot of time and effort. This article aims at the automatic detection of corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection methods. Unlike numerical data, which are usually assessed by distance-based methods, the entries in questionnaires need to be assessed from multiple perspectives. This paper proposes a novel algorithm utilizing the rough sets that capture relations among attributes/questions. The rough set theory is based on the granularity of data and is used to find combinations of attributes identifying the discernible questionnaires. The method is compared with standard and recent outlier detection algorithms that are based on distance, entropy, correlation, and probability. The tests are computed on the real-world HBSC dataset using several experiments. The rough set score computed on combinations of three attributes is preferred as it returns significant outliers that even reflect multiple perspectives investigated by other types of methods.
Název v anglickém jazyce
Towards Rough Set Theory for Outliers Detection in Questionnaire Data
Popis výsledku anglicky
Manual processing of questionnaire surveys takes a lot of time and effort. This article aims at the automatic detection of corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection methods. Unlike numerical data, which are usually assessed by distance-based methods, the entries in questionnaires need to be assessed from multiple perspectives. This paper proposes a novel algorithm utilizing the rough sets that capture relations among attributes/questions. The rough set theory is based on the granularity of data and is used to find combinations of attributes identifying the discernible questionnaires. The method is compared with standard and recent outlier detection algorithms that are based on distance, entropy, correlation, and probability. The tests are computed on the real-world HBSC dataset using several experiments. The rough set score computed on combinations of three attributes is preferred as it returns significant outliers that even reflect multiple perspectives investigated by other types of methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 14164
ISBN
978-3-031-42822-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
310-324
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tokio
Datum konání akce
22. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—