Automation of cleaning and ensembles for outliers detection in questionnaire data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15510%2F22%3A73613216" target="_blank" >RIV/61989592:15510/22:73613216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10250037
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422010727" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422010727</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.117809" target="_blank" >10.1016/j.eswa.2022.117809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automation of cleaning and ensembles for outliers detection in questionnaire data
Popis výsledku v původním jazyce
This article is focused on the automatic detection of the corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection. The questionnaire surveys are often used in psychology research to collect self-report data and their preprocessing takes a lot of manual effort. Unlike with numerical data where the distance-based outliers prevail, the records in questionnaires have to be assessed from various perspectives that do not relate so much. We identify the most frequent types of errors in questionnaires. For each of them, we suggest different outliers detection methods ranking the records with the usage of normalized scores. Considering the similarity between pairs of outlier scores (some are highly uncorrelated), we propose an ensemble based on the union of outliers detected by different methods. Our outlier detection framework consists of some well-known algorithms but we also propose novel approaches addressing the typical issues of questionnaires. The selected methods are based on distance, entropy, and probability. The experimental section describes the process of assembling the methods and selecting their parameters for the final model detecting significant outliers in the real-world HBSC dataset.
Název v anglickém jazyce
Automation of cleaning and ensembles for outliers detection in questionnaire data
Popis výsledku anglicky
This article is focused on the automatic detection of the corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection. The questionnaire surveys are often used in psychology research to collect self-report data and their preprocessing takes a lot of manual effort. Unlike with numerical data where the distance-based outliers prevail, the records in questionnaires have to be assessed from various perspectives that do not relate so much. We identify the most frequent types of errors in questionnaires. For each of them, we suggest different outliers detection methods ranking the records with the usage of normalized scores. Considering the similarity between pairs of outlier scores (some are highly uncorrelated), we propose an ensemble based on the union of outliers detected by different methods. Our outlier detection framework consists of some well-known algorithms but we also propose novel approaches addressing the typical issues of questionnaires. The selected methods are based on distance, entropy, and probability. The experimental section describes the process of assembling the methods and selecting their parameters for the final model detecting significant outliers in the real-world HBSC dataset.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERT SYSTEMS WITH APPLICATIONS
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
15
Číslo periodika v rámci svazku
117809
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000841013700010
EID výsledku v databázi Scopus
2-s2.0-85133853052