On Regular Distance Magic Graphs of Odd Order
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254518" target="_blank" >RIV/61989100:27240/23:10254518 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10254518
Výsledek na webu
<a href="https://combinatorialpress.com/jcmcc-articles/volume-117/on-regular-distance-magic-graphs-of-odd-order/" target="_blank" >https://combinatorialpress.com/jcmcc-articles/volume-117/on-regular-distance-magic-graphs-of-odd-order/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.61091/jcmcc117-06" target="_blank" >10.61091/jcmcc117-06</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Regular Distance Magic Graphs of Odd Order
Popis výsledku v původním jazyce
Let G = (V, E) be a graph with n vertices. A bijection f : V -> {1, 2, . . ., n} is called a distance magic labeling of G if there exists an integer k such that the sum of neighbours weights of v is k for all v in V, where N(v) is the set of all vertices adjacent to v. Any graph which admits a distance magic labeling is a distance magic graph. The existence of regular distance magic graphs of even order was solved completely in a paper by Fronček, Kovář, and Kovářová. In two recent papers, the existence of 4-regular and of (n-3)-regular distance magic graphs of odd order was also settled completely. In this paper, we provide a similar classification of all feasible odd orders of r-regular distance magic graphs when r = 6, 8, 10, 12. Even though some nonexistence proofs for small orders are done by brute force enumeration, all the existence proofs are constructive. (C) 2023 Charles Babbage Research Centre. All rights reserved.
Název v anglickém jazyce
On Regular Distance Magic Graphs of Odd Order
Popis výsledku anglicky
Let G = (V, E) be a graph with n vertices. A bijection f : V -> {1, 2, . . ., n} is called a distance magic labeling of G if there exists an integer k such that the sum of neighbours weights of v is k for all v in V, where N(v) is the set of all vertices adjacent to v. Any graph which admits a distance magic labeling is a distance magic graph. The existence of regular distance magic graphs of even order was solved completely in a paper by Fronček, Kovář, and Kovářová. In two recent papers, the existence of 4-regular and of (n-3)-regular distance magic graphs of odd order was also settled completely. In this paper, we provide a similar classification of all feasible odd orders of r-regular distance magic graphs when r = 6, 8, 10, 12. Even though some nonexistence proofs for small orders are done by brute force enumeration, all the existence proofs are constructive. (C) 2023 Charles Babbage Research Centre. All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Journal of Combinatorial Mathematics and Combinatorial Computing
ISSN
0835-3026
e-ISSN
2817-576X
Svazek periodika
117
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
10
Strana od-do
55-64
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85184135530