Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254663" target="_blank" >RIV/61989100:27240/23:10254663 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10286478" target="_blank" >https://ieeexplore.ieee.org/document/10286478</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3325062" target="_blank" >10.1109/ACCESS.2023.3325062</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine

  • Popis výsledku v původním jazyce

    The recent development of object-tracking framework inventions has affected the performance of many manufacturing and service industries, such as product delivery, autonomous driving systems, security systems, military and transportation, retailing industries, smart cities, healthcare systems, agriculture, etc. Object tracking in physical environments and conditions is much more challenging to achieve accurate results. However, the process can be experimented using simulation techniques or platforms to evaluate and check the model&apos;s performance under different simulation conditions and weather changes. This paper represents one of the target tracking approaches based on the reinforcement learning technique integrated with tf-agent (TensorFlow-Agent) to accomplish the tracking process in the Unreal Game Engine simulation platform, Blocks. The productivity of these platforms can be seen while experimenting in virtual-reality conditions with virtual drone agents and performing fine-tuning to achieve the best or desired performance. In this proposal, the tf-agent drone learns how to track an object integration with a deep reinforcement learning process to control the actions, states, and tracking by receiving sequential frames from a simple Blocks environment. The TF-agent is trained in a Blocks environment for adaptation to the environment and existing objects in a simulation environment for further testing and evaluation regarding the accuracy of tracking and speed. We have tested and compared two approaches to the algorithm methods based on the DQN and PPO trackers integrated with the simulation process regarding stability, rewards, and numerical performance. Author

  • Název v anglickém jazyce

    Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine

  • Popis výsledku anglicky

    The recent development of object-tracking framework inventions has affected the performance of many manufacturing and service industries, such as product delivery, autonomous driving systems, security systems, military and transportation, retailing industries, smart cities, healthcare systems, agriculture, etc. Object tracking in physical environments and conditions is much more challenging to achieve accurate results. However, the process can be experimented using simulation techniques or platforms to evaluate and check the model&apos;s performance under different simulation conditions and weather changes. This paper represents one of the target tracking approaches based on the reinforcement learning technique integrated with tf-agent (TensorFlow-Agent) to accomplish the tracking process in the Unreal Game Engine simulation platform, Blocks. The productivity of these platforms can be seen while experimenting in virtual-reality conditions with virtual drone agents and performing fine-tuning to achieve the best or desired performance. In this proposal, the tf-agent drone learns how to track an object integration with a deep reinforcement learning process to control the actions, states, and tracking by receiving sequential frames from a simple Blocks environment. The TF-agent is trained in a Blocks environment for adaptation to the environment and existing objects in a simulation environment for further testing and evaluation regarding the accuracy of tracking and speed. We have tested and compared two approaches to the algorithm methods based on the DQN and PPO trackers integrated with the simulation process regarding stability, rewards, and numerical performance. Author

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    124129-124138

  • Kód UT WoS článku

    001104556800001

  • EID výsledku v databázi Scopus

    2-s2.0-85174831696