Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254663" target="_blank" >RIV/61989100:27240/23:10254663 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10286478" target="_blank" >https://ieeexplore.ieee.org/document/10286478</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3325062" target="_blank" >10.1109/ACCESS.2023.3325062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine
Popis výsledku v původním jazyce
The recent development of object-tracking framework inventions has affected the performance of many manufacturing and service industries, such as product delivery, autonomous driving systems, security systems, military and transportation, retailing industries, smart cities, healthcare systems, agriculture, etc. Object tracking in physical environments and conditions is much more challenging to achieve accurate results. However, the process can be experimented using simulation techniques or platforms to evaluate and check the model's performance under different simulation conditions and weather changes. This paper represents one of the target tracking approaches based on the reinforcement learning technique integrated with tf-agent (TensorFlow-Agent) to accomplish the tracking process in the Unreal Game Engine simulation platform, Blocks. The productivity of these platforms can be seen while experimenting in virtual-reality conditions with virtual drone agents and performing fine-tuning to achieve the best or desired performance. In this proposal, the tf-agent drone learns how to track an object integration with a deep reinforcement learning process to control the actions, states, and tracking by receiving sequential frames from a simple Blocks environment. The TF-agent is trained in a Blocks environment for adaptation to the environment and existing objects in a simulation environment for further testing and evaluation regarding the accuracy of tracking and speed. We have tested and compared two approaches to the algorithm methods based on the DQN and PPO trackers integrated with the simulation process regarding stability, rewards, and numerical performance. Author
Název v anglickém jazyce
Deep Reinforcement Learning Tf-agent-based Object Tracking with Virtual Autonomous Drone in a Game Engine
Popis výsledku anglicky
The recent development of object-tracking framework inventions has affected the performance of many manufacturing and service industries, such as product delivery, autonomous driving systems, security systems, military and transportation, retailing industries, smart cities, healthcare systems, agriculture, etc. Object tracking in physical environments and conditions is much more challenging to achieve accurate results. However, the process can be experimented using simulation techniques or platforms to evaluate and check the model's performance under different simulation conditions and weather changes. This paper represents one of the target tracking approaches based on the reinforcement learning technique integrated with tf-agent (TensorFlow-Agent) to accomplish the tracking process in the Unreal Game Engine simulation platform, Blocks. The productivity of these platforms can be seen while experimenting in virtual-reality conditions with virtual drone agents and performing fine-tuning to achieve the best or desired performance. In this proposal, the tf-agent drone learns how to track an object integration with a deep reinforcement learning process to control the actions, states, and tracking by receiving sequential frames from a simple Blocks environment. The TF-agent is trained in a Blocks environment for adaptation to the environment and existing objects in a simulation environment for further testing and evaluation regarding the accuracy of tracking and speed. We have tested and compared two approaches to the algorithm methods based on the DQN and PPO trackers integrated with the simulation process regarding stability, rewards, and numerical performance. Author
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
11
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
124129-124138
Kód UT WoS článku
001104556800001
EID výsledku v databázi Scopus
2-s2.0-85174831696