Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254667" target="_blank" >RIV/61989100:27240/23:10254667 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/23:10254667
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0960077923002783" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0960077923002783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2023.113377" target="_blank" >10.1016/j.chaos.2023.113377</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods
Popis výsledku v původním jazyce
One of the key tasks in the economy is forecasting the economic agents' expectations of the future values of economic variables using mathematical models. The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power. In this paper, we study the regimes of behavior of two economic models and identify irregular dynamics in them. Using these models as an example, we demonstrate the effectiveness of evolutionary algorithms and the continuous deep Q-learning method in combination with Pyragas control method for deriving a control action that stabilizes unstable periodic trajectories and suppresses chaotic dynamics. We compare qualitative and quantitative characteristics of the model's dynamics before and after applying control and verify the obtained results by numerical simulation. Proposed approach can improve the reliability of forecasting and tuning of the economic mechanism to achieve maximum decision-making efficiency.
Název v anglickém jazyce
Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods
Popis výsledku anglicky
One of the key tasks in the economy is forecasting the economic agents' expectations of the future values of economic variables using mathematical models. The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power. In this paper, we study the regimes of behavior of two economic models and identify irregular dynamics in them. Using these models as an example, we demonstrate the effectiveness of evolutionary algorithms and the continuous deep Q-learning method in combination with Pyragas control method for deriving a control action that stabilizes unstable periodic trajectories and suppresses chaotic dynamics. We compare qualitative and quantitative characteristics of the model's dynamics before and after applying control and verify the obtained results by numerical simulation. Proposed approach can improve the reliability of forecasting and tuning of the economic mechanism to achieve maximum decision-making efficiency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos, Solitons & Fractals
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
170
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
001030254100001
EID výsledku v databázi Scopus
—