Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255710" target="_blank" >RIV/61989100:27740/24:10255710 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124002481" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124002481</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100862" target="_blank" >10.1016/j.padiff.2024.100862</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits
Popis výsledku v původním jazyce
This study focuses on finding effective solutions to a mathematical equation known as the Lonngren wave equation. The solutions from the Lonngren wave equation can be used to evaluate electromagnetic signals in cable lines and sound waves in stochastic systems. The main equation is transformed into an ordinary differential equation by utilizing a suitable wave transformation, allowing for the exploration of mathematical models by using the modified Khater technique to detect the exact solution of a solitary wave. We use the provided method to derive the trigonometric, rational, and hyperbolic solutions. To illustrate the model's physical behavior, we also present graphical plots of selected solutions to illustrate the physical behavior of the model. By choosing appropriate values for arbitrary factors, the visual representation enhances the understanding of the dynamical system. Furthermore, the system is transformed into a planar dynamical system, and phase portrait analysis is conducted. Additionally, the sensitivity analysis of the dynamical system confirms that slight changes in the initial conditions will have minimal impact on the stability of the solution. The existence of chaotic dynamics in the Lonngren wave equation is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase portraits will be used to demonstrate these chaotic behaviors. (C) 2024 The Author(s)
Název v anglickém jazyce
Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits
Popis výsledku anglicky
This study focuses on finding effective solutions to a mathematical equation known as the Lonngren wave equation. The solutions from the Lonngren wave equation can be used to evaluate electromagnetic signals in cable lines and sound waves in stochastic systems. The main equation is transformed into an ordinary differential equation by utilizing a suitable wave transformation, allowing for the exploration of mathematical models by using the modified Khater technique to detect the exact solution of a solitary wave. We use the provided method to derive the trigonometric, rational, and hyperbolic solutions. To illustrate the model's physical behavior, we also present graphical plots of selected solutions to illustrate the physical behavior of the model. By choosing appropriate values for arbitrary factors, the visual representation enhances the understanding of the dynamical system. Furthermore, the system is transformed into a planar dynamical system, and phase portrait analysis is conducted. Additionally, the sensitivity analysis of the dynamical system confirms that slight changes in the initial conditions will have minimal impact on the stability of the solution. The existence of chaotic dynamics in the Lonngren wave equation is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase portraits will be used to demonstrate these chaotic behaviors. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
11
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85200910842