Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255710" target="_blank" >RIV/61989100:27740/24:10255710 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2666818124002481" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124002481</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.padiff.2024.100862" target="_blank" >10.1016/j.padiff.2024.100862</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits

  • Popis výsledku v původním jazyce

    This study focuses on finding effective solutions to a mathematical equation known as the Lonngren wave equation. The solutions from the Lonngren wave equation can be used to evaluate electromagnetic signals in cable lines and sound waves in stochastic systems. The main equation is transformed into an ordinary differential equation by utilizing a suitable wave transformation, allowing for the exploration of mathematical models by using the modified Khater technique to detect the exact solution of a solitary wave. We use the provided method to derive the trigonometric, rational, and hyperbolic solutions. To illustrate the model&apos;s physical behavior, we also present graphical plots of selected solutions to illustrate the physical behavior of the model. By choosing appropriate values for arbitrary factors, the visual representation enhances the understanding of the dynamical system. Furthermore, the system is transformed into a planar dynamical system, and phase portrait analysis is conducted. Additionally, the sensitivity analysis of the dynamical system confirms that slight changes in the initial conditions will have minimal impact on the stability of the solution. The existence of chaotic dynamics in the Lonngren wave equation is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase portraits will be used to demonstrate these chaotic behaviors. (C) 2024 The Author(s)

  • Název v anglickém jazyce

    Investigating optical soliton pattern and dynamical analysis of Lonngren wave equation via phase portraits

  • Popis výsledku anglicky

    This study focuses on finding effective solutions to a mathematical equation known as the Lonngren wave equation. The solutions from the Lonngren wave equation can be used to evaluate electromagnetic signals in cable lines and sound waves in stochastic systems. The main equation is transformed into an ordinary differential equation by utilizing a suitable wave transformation, allowing for the exploration of mathematical models by using the modified Khater technique to detect the exact solution of a solitary wave. We use the provided method to derive the trigonometric, rational, and hyperbolic solutions. To illustrate the model&apos;s physical behavior, we also present graphical plots of selected solutions to illustrate the physical behavior of the model. By choosing appropriate values for arbitrary factors, the visual representation enhances the understanding of the dynamical system. Furthermore, the system is transformed into a planar dynamical system, and phase portrait analysis is conducted. Additionally, the sensitivity analysis of the dynamical system confirms that slight changes in the initial conditions will have minimal impact on the stability of the solution. The existence of chaotic dynamics in the Lonngren wave equation is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase portraits will be used to demonstrate these chaotic behaviors. (C) 2024 The Author(s)

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Partial Differential Equations in Applied Mathematics

  • ISSN

    2666-8181

  • e-ISSN

    2666-8181

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85200910842