Analytical and dynamical analysis of nonlinear Riemann wave equation in plasma systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255736" target="_blank" >RIV/61989100:27740/24:10255736 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/25765299.2024.2408971" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/25765299.2024.2408971</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/25765299.2024.2408971" target="_blank" >10.1080/25765299.2024.2408971</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical and dynamical analysis of nonlinear Riemann wave equation in plasma systems
Popis výsledku v původním jazyce
The Riemann wave equation presents appealing nonlinear equations applicable in sea-water and tsunami wave propagation, ion and magneto-sound waves in plasmas, electromagnetic waves in transmission lines, and homogeneous stationary media. This study focuses on deriving soliton solutions in optics and exploring their physical properties. A wave transformation is used to convert a partial differential equation into an ordinary differential equation, from which soliton solutions are obtained using the generalized Riccati equation mapping approach. The solutions encompass various types of solitons, including bright, dark, periodic, and kink solitons. A comparison of solutions from this analytical method enhances the understanding of the nonlinear model's behavior, with implications in plasma physics, fluid dynamics, optics, and communication technology. Additionally, 2D and 3D graphs illustrate the physical phenomena of the solutions using appropriate constant parameters. The qualitative analysis of the undisturbed planar system involves examining phase portraits in bifurcation theory, followed by introducing an outward force to induce disruption and reveal chaotic phenomena. Chaotic trajectories in the perturbed system are detected through various plots, including 3D, 2D, power spectrum, and chaotic attractor, alongside Lyapunov exponents. Stability analysis under different initial conditions is conducted, and sensitivity assessments are performed using the Runge-Kutta method. The findings are innovative and have not been previously explored for this system, highlighting the reliability, simplicity, and effectiveness of these techniques in analyzing nonlinear models in mathematical physics and engineering.
Název v anglickém jazyce
Analytical and dynamical analysis of nonlinear Riemann wave equation in plasma systems
Popis výsledku anglicky
The Riemann wave equation presents appealing nonlinear equations applicable in sea-water and tsunami wave propagation, ion and magneto-sound waves in plasmas, electromagnetic waves in transmission lines, and homogeneous stationary media. This study focuses on deriving soliton solutions in optics and exploring their physical properties. A wave transformation is used to convert a partial differential equation into an ordinary differential equation, from which soliton solutions are obtained using the generalized Riccati equation mapping approach. The solutions encompass various types of solitons, including bright, dark, periodic, and kink solitons. A comparison of solutions from this analytical method enhances the understanding of the nonlinear model's behavior, with implications in plasma physics, fluid dynamics, optics, and communication technology. Additionally, 2D and 3D graphs illustrate the physical phenomena of the solutions using appropriate constant parameters. The qualitative analysis of the undisturbed planar system involves examining phase portraits in bifurcation theory, followed by introducing an outward force to induce disruption and reveal chaotic phenomena. Chaotic trajectories in the perturbed system are detected through various plots, including 3D, 2D, power spectrum, and chaotic attractor, alongside Lyapunov exponents. Stability analysis under different initial conditions is conducted, and sensitivity assessments are performed using the Runge-Kutta method. The findings are innovative and have not been previously explored for this system, highlighting the reliability, simplicity, and effectiveness of these techniques in analyzing nonlinear models in mathematical physics and engineering.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Arab Journal of Basic and Applied Sciences
ISSN
2576-5299
e-ISSN
2576-5299
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
536-553
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85206262986