Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255135" target="_blank" >RIV/61989100:27740/24:10255135 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aimspress.com/article/doi/10.3934/math.2024992" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.2024992</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3934/math.2024992" target="_blank" >10.3934/math.2024992</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion

  • Popis výsledku v původním jazyce

    In this study, the underlying traits of the new wave equation in extended (3 +1) dimensions, utilized in the field of plasma physics and fluids to comprehend nonlinear wave scenarios in various physical systems, were explored. Furthermore, this investigation enhanced comprehension of the characteristics of nonlinear waves present in seas and oceans. The analytical solutions of models under consideration were retrieved using the sub -equation approach and Sardar sub -equation approach. A diverse range of solitons, including bright, dark, combined dark -bright, and periodic singular solitons, was made available through the proposed methods. These solutions were illustrated through visual depictions utilizing 2D, 3D, and density plots with carefully chosen parameters. Subsequently, an analysis of the dynamical nature of the model was undertaken, encompassing various aspects such as bifurcation, chaos, and sensitivity. Bifurcation analysis was conducted via phase portraits at critical points, revealing the system&apos;s transition dynamics. Introducing an external periodic force induced chaotic phenomena in the dynamical system, which were visualized through time plots, twodimensional plots, three-dimensional plots, and the presentation of Lyapunov exponents. Furthermore, the sensitivity analysis of the investigated model was executed utilizing the Runge-Kutta method. The obtained findings indicated the e fficacy of the presented approaches for analyzing phase portraits and solitons over a wider range of nonlinear systems.

  • Název v anglickém jazyce

    Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion

  • Popis výsledku anglicky

    In this study, the underlying traits of the new wave equation in extended (3 +1) dimensions, utilized in the field of plasma physics and fluids to comprehend nonlinear wave scenarios in various physical systems, were explored. Furthermore, this investigation enhanced comprehension of the characteristics of nonlinear waves present in seas and oceans. The analytical solutions of models under consideration were retrieved using the sub -equation approach and Sardar sub -equation approach. A diverse range of solitons, including bright, dark, combined dark -bright, and periodic singular solitons, was made available through the proposed methods. These solutions were illustrated through visual depictions utilizing 2D, 3D, and density plots with carefully chosen parameters. Subsequently, an analysis of the dynamical nature of the model was undertaken, encompassing various aspects such as bifurcation, chaos, and sensitivity. Bifurcation analysis was conducted via phase portraits at critical points, revealing the system&apos;s transition dynamics. Introducing an external periodic force induced chaotic phenomena in the dynamical system, which were visualized through time plots, twodimensional plots, three-dimensional plots, and the presentation of Lyapunov exponents. Furthermore, the sensitivity analysis of the investigated model was executed utilizing the Runge-Kutta method. The obtained findings indicated the e fficacy of the presented approaches for analyzing phase portraits and solitons over a wider range of nonlinear systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    AIMS Mathematics

  • ISSN

    2473-6988

  • e-ISSN

    2473-6988

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    20390-20412

  • Kód UT WoS článku

    001253608700003

  • EID výsledku v databázi Scopus

    2-s2.0-85196827553