Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255135" target="_blank" >RIV/61989100:27740/24:10255135 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimspress.com/article/doi/10.3934/math.2024992" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.2024992</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.2024992" target="_blank" >10.3934/math.2024992</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion
Popis výsledku v původním jazyce
In this study, the underlying traits of the new wave equation in extended (3 +1) dimensions, utilized in the field of plasma physics and fluids to comprehend nonlinear wave scenarios in various physical systems, were explored. Furthermore, this investigation enhanced comprehension of the characteristics of nonlinear waves present in seas and oceans. The analytical solutions of models under consideration were retrieved using the sub -equation approach and Sardar sub -equation approach. A diverse range of solitons, including bright, dark, combined dark -bright, and periodic singular solitons, was made available through the proposed methods. These solutions were illustrated through visual depictions utilizing 2D, 3D, and density plots with carefully chosen parameters. Subsequently, an analysis of the dynamical nature of the model was undertaken, encompassing various aspects such as bifurcation, chaos, and sensitivity. Bifurcation analysis was conducted via phase portraits at critical points, revealing the system's transition dynamics. Introducing an external periodic force induced chaotic phenomena in the dynamical system, which were visualized through time plots, twodimensional plots, three-dimensional plots, and the presentation of Lyapunov exponents. Furthermore, the sensitivity analysis of the investigated model was executed utilizing the Runge-Kutta method. The obtained findings indicated the e fficacy of the presented approaches for analyzing phase portraits and solitons over a wider range of nonlinear systems.
Název v anglickém jazyce
Unveiling solitons and dynamic patterns for a (3+1)-dimensional model describing nonlinear wave motion
Popis výsledku anglicky
In this study, the underlying traits of the new wave equation in extended (3 +1) dimensions, utilized in the field of plasma physics and fluids to comprehend nonlinear wave scenarios in various physical systems, were explored. Furthermore, this investigation enhanced comprehension of the characteristics of nonlinear waves present in seas and oceans. The analytical solutions of models under consideration were retrieved using the sub -equation approach and Sardar sub -equation approach. A diverse range of solitons, including bright, dark, combined dark -bright, and periodic singular solitons, was made available through the proposed methods. These solutions were illustrated through visual depictions utilizing 2D, 3D, and density plots with carefully chosen parameters. Subsequently, an analysis of the dynamical nature of the model was undertaken, encompassing various aspects such as bifurcation, chaos, and sensitivity. Bifurcation analysis was conducted via phase portraits at critical points, revealing the system's transition dynamics. Introducing an external periodic force induced chaotic phenomena in the dynamical system, which were visualized through time plots, twodimensional plots, three-dimensional plots, and the presentation of Lyapunov exponents. Furthermore, the sensitivity analysis of the investigated model was executed utilizing the Runge-Kutta method. The obtained findings indicated the e fficacy of the presented approaches for analyzing phase portraits and solitons over a wider range of nonlinear systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS Mathematics
ISSN
2473-6988
e-ISSN
2473-6988
Svazek periodika
9
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
20390-20412
Kód UT WoS článku
001253608700003
EID výsledku v databázi Scopus
2-s2.0-85196827553