Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optical soliton stability in zig-zag optical lattices: comparative analysis through two analytical techniques and phase portraits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255683" target="_blank" >RIV/61989100:27740/24:10255683 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11071-024-10172-2" target="_blank" >https://link.springer.com/article/10.1007/s11071-024-10172-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11071-024-10172-2" target="_blank" >10.1007/s11071-024-10172-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optical soliton stability in zig-zag optical lattices: comparative analysis through two analytical techniques and phase portraits

  • Popis výsledku v původním jazyce

    This article explores the examination of the widely employed zig-zag optical lattice model for cold bosonic atoms, which is commonly utilized to depict nonlinear wave in fluid mechanics and plasma physics. The focus is on obtaining soliton solutions in optics and investigating their physical properties. A wave transformation is initially applied to convert a partial differential equation (PDE) into an ordinary differential equation (ODE). Soliton solutions are subsequently obtained through the application of two distinct methods, namely the generalized logistic equation method and the Sardar sub-equation method. These solutions include bright, dark, combined dark-bright, chirped type solitons, bell-shaped, periodic, W-shape, and kink solitons. In this paper, the solutions derived from two analytical approaches were compared to enhance the understanding of the behavior of the discussed nonlinear model. The obtained solutions have significant implications across various fields such as plasma physics, fluid dynamics, optics, and communication technology. Furthermore, 3D and 2D graphs are generated to depict the physical phenomena of the derived solutions by assigning appropriate constant parameters. The qualitative evaluation of the undisturbed planar system involves the analysis of phase portraits within bifurcation theory. Subsequently, the introduction of an outward force is carried out to induce disruption, and chaotic phenomena are unveiled. The detection of chaotic trajectory in the perturbed system is achieved through 3D plots, 2D plots, time scale plots, and Lyapunov exponents. Furthermore, stability analysis of the examined model is addressed under distinct initial conditions. Finally, the sensitivity assessment of the model under consideration is carried out using the Runge-Kutta method. The results of this study are innovative and have not been previously investigated for the system under consideration. The results obtained underscore the reliability, simplicity, and effectiveness of these techniques in analyzing a variety of nonlinear models found in mathematical physics and engineering disciplines. (C) The Author(s) 2024.

  • Název v anglickém jazyce

    Optical soliton stability in zig-zag optical lattices: comparative analysis through two analytical techniques and phase portraits

  • Popis výsledku anglicky

    This article explores the examination of the widely employed zig-zag optical lattice model for cold bosonic atoms, which is commonly utilized to depict nonlinear wave in fluid mechanics and plasma physics. The focus is on obtaining soliton solutions in optics and investigating their physical properties. A wave transformation is initially applied to convert a partial differential equation (PDE) into an ordinary differential equation (ODE). Soliton solutions are subsequently obtained through the application of two distinct methods, namely the generalized logistic equation method and the Sardar sub-equation method. These solutions include bright, dark, combined dark-bright, chirped type solitons, bell-shaped, periodic, W-shape, and kink solitons. In this paper, the solutions derived from two analytical approaches were compared to enhance the understanding of the behavior of the discussed nonlinear model. The obtained solutions have significant implications across various fields such as plasma physics, fluid dynamics, optics, and communication technology. Furthermore, 3D and 2D graphs are generated to depict the physical phenomena of the derived solutions by assigning appropriate constant parameters. The qualitative evaluation of the undisturbed planar system involves the analysis of phase portraits within bifurcation theory. Subsequently, the introduction of an outward force is carried out to induce disruption, and chaotic phenomena are unveiled. The detection of chaotic trajectory in the perturbed system is achieved through 3D plots, 2D plots, time scale plots, and Lyapunov exponents. Furthermore, stability analysis of the examined model is addressed under distinct initial conditions. Finally, the sensitivity assessment of the model under consideration is carried out using the Runge-Kutta method. The results of this study are innovative and have not been previously investigated for the system under consideration. The results obtained underscore the reliability, simplicity, and effectiveness of these techniques in analyzing a variety of nonlinear models found in mathematical physics and engineering disciplines. (C) The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Dynamics

  • ISSN

    0924-090X

  • e-ISSN

    1573-269X

  • Svazek periodika

    112

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    22221-22243

  • Kód UT WoS článku

    001295803800003

  • EID výsledku v databázi Scopus

    2-s2.0-85201575829