Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255816" target="_blank" >RIV/61989100:27740/24:10255816 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024088571?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024088571?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e32826" target="_blank" >10.1016/j.heliyon.2024.e32826</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment
Popis výsledku v původním jazyce
The current study explores the (2+1)-dimensional Chaffee-Infante equation, which holds significant importance in theoretical physics renowned reaction-diffusion equation with widespread applications across multiple disciplines, for example, ion-acoustic waves in optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, plasma physics, and various other fields. Furthermore, the Chaffee-Infante equation serves as a model that elucidates the physical processes of mass transport and particle diffusion. We employ an innovative new extended direct algebraic method to enhance the accuracy of the derived exact travelling wave solutions. The obtained soliton solutions span a wide range of travelling waves like bright-bell shape, combined bright-dark, multiple bright-dark, bright, flat-kink, periodic, and singular. These solutions offer valuable insights into wave behaviour in nonlinear media and find applications in diverse fields such as optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, and plasma physics. Soliton solutions are visually present by manipulating parameters using Wolfram Mathematica software, graphical representations allow us to study solitary waves as parameters change. Observing the dynamics of the model, this study presents sensitivity in a nonlinear dynamical system. The applied mathematical approaches demonstrate its ability to identify reliable and efficient travelling wave solitary solutions for various nonlinear evolution equations.
Název v anglickém jazyce
Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment
Popis výsledku anglicky
The current study explores the (2+1)-dimensional Chaffee-Infante equation, which holds significant importance in theoretical physics renowned reaction-diffusion equation with widespread applications across multiple disciplines, for example, ion-acoustic waves in optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, plasma physics, and various other fields. Furthermore, the Chaffee-Infante equation serves as a model that elucidates the physical processes of mass transport and particle diffusion. We employ an innovative new extended direct algebraic method to enhance the accuracy of the derived exact travelling wave solutions. The obtained soliton solutions span a wide range of travelling waves like bright-bell shape, combined bright-dark, multiple bright-dark, bright, flat-kink, periodic, and singular. These solutions offer valuable insights into wave behaviour in nonlinear media and find applications in diverse fields such as optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, and plasma physics. Soliton solutions are visually present by manipulating parameters using Wolfram Mathematica software, graphical representations allow us to study solitary waves as parameters change. Observing the dynamics of the model, this study presents sensitivity in a nonlinear dynamical system. The applied mathematical approaches demonstrate its ability to identify reliable and efficient travelling wave solitary solutions for various nonlinear evolution equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001298504700001
EID výsledku v databázi Scopus
2-s2.0-85196285853