Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255711" target="_blank" >RIV/61989100:27740/24:10255711 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304334" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0304334" target="_blank" >10.1371/journal.pone.0304334</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation
Popis výsledku v původním jazyce
This article aims to study the time fractional coupled nonlinear Schr & ouml;dinger equation, which explains the interaction between modes in nonlinear optics and Bose-Einstein condensation. The proposed generalized projective Riccati equation method and modified auxiliary equation method extract a more efficient and broad range of soliton solutions. These include novel solutions like a combined dark-lump wave soliton, multiple dark-lump wave soliton, two dark-kink solitons, flat kink-lump wave, multiple U-shaped with lump wave, combined bright-dark with high amplitude lump wave, bright-dark with lump wave and kink dark-periodic solitons are derived. The travelling wave patterns of the model are graphically presented with suitable parameters in 3D, density, contour and 2D surfaces, enhancing understanding of parameter impact. The proposed model's dynamics were observed and presented as quasi-periodic chaotic, periodic systems and quasi-periodic. This analysis confirms the effectiveness and reliability of the method employed, demonstrating its applicability in discovering travelling wave solitons for a wide range of nonlinear evolution equations.
Název v anglickém jazyce
Analyzing chaos and superposition of lump waves with other waves in the time-fractional coupled nonlinear schördinger equation
Popis výsledku anglicky
This article aims to study the time fractional coupled nonlinear Schr & ouml;dinger equation, which explains the interaction between modes in nonlinear optics and Bose-Einstein condensation. The proposed generalized projective Riccati equation method and modified auxiliary equation method extract a more efficient and broad range of soliton solutions. These include novel solutions like a combined dark-lump wave soliton, multiple dark-lump wave soliton, two dark-kink solitons, flat kink-lump wave, multiple U-shaped with lump wave, combined bright-dark with high amplitude lump wave, bright-dark with lump wave and kink dark-periodic solitons are derived. The travelling wave patterns of the model are graphically presented with suitable parameters in 3D, density, contour and 2D surfaces, enhancing understanding of parameter impact. The proposed model's dynamics were observed and presented as quasi-periodic chaotic, periodic systems and quasi-periodic. This analysis confirms the effectiveness and reliability of the method employed, demonstrating its applicability in discovering travelling wave solitons for a wide range of nonlinear evolution equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
—
Kód UT WoS článku
001305462200019
EID výsledku v databázi Scopus
2-s2.0-85202651399