Propagation of solitary wave in micro-crystalline materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254847" target="_blank" >RIV/61989100:27740/24:10254847 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S221137972400233X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221137972400233X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rinp.2024.107550" target="_blank" >10.1016/j.rinp.2024.107550</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Propagation of solitary wave in micro-crystalline materials
Popis výsledku v původním jazyce
In this article, the propagation of waves in micro-crystalline materials is governed by the structure of the strain wave equation and takes into consideration various dimensions of micro-crystalline. Micro-crystalline materials that are deserving of special attention in material physics. The strain wave equation represents the dynamic behavior associated with multiple phenomena of a physical nature. The new extended direct algebraic methodology is applied to acquire the different types of exact solitonic solutions. This technique stands out as one of the most effective approaches for producing a diverse set of exact solutions to nonlinear partial differential equations. By applying a new extended direct algebraic approach, we get solutions in the form of smooth periodic, anti -dark, anti-bell-shape, periodic bright, Combined bright -dark soliton, mixed-periodic solution, anti -kink formations, Stumpons, mixed periodic solitons, and decaying cusped solitons. Furthermore, two-dimensional, three-dimensional, and contour plots are created for different solutions, helping us make sense of their physical significance more clearly. The importance of the obtained results lies in their ability to represent diverse and complex phenomena in mathematical and physical systems.
Název v anglickém jazyce
Propagation of solitary wave in micro-crystalline materials
Popis výsledku anglicky
In this article, the propagation of waves in micro-crystalline materials is governed by the structure of the strain wave equation and takes into consideration various dimensions of micro-crystalline. Micro-crystalline materials that are deserving of special attention in material physics. The strain wave equation represents the dynamic behavior associated with multiple phenomena of a physical nature. The new extended direct algebraic methodology is applied to acquire the different types of exact solitonic solutions. This technique stands out as one of the most effective approaches for producing a diverse set of exact solutions to nonlinear partial differential equations. By applying a new extended direct algebraic approach, we get solutions in the form of smooth periodic, anti -dark, anti-bell-shape, periodic bright, Combined bright -dark soliton, mixed-periodic solution, anti -kink formations, Stumpons, mixed periodic solitons, and decaying cusped solitons. Furthermore, two-dimensional, three-dimensional, and contour plots are created for different solutions, helping us make sense of their physical significance more clearly. The importance of the obtained results lies in their ability to represent diverse and complex phenomena in mathematical and physical systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Physics
ISSN
2211-3797
e-ISSN
2211-3797
Svazek periodika
58
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001203555900001
EID výsledku v databázi Scopus
2-s2.0-85187026479