A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255715" target="_blank" >RIV/61989100:27740/24:10255715 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-65218-7" target="_blank" >https://www.nature.com/articles/s41598-024-65218-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-65218-7" target="_blank" >10.1038/s41598-024-65218-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study
Popis výsledku v původním jazyce
In this article, we explore exact solitary wave solutions to the van der Waals equation which is crucial for numerous applications involving a variety of physical occurrences. This system is used to define the behavior of real gases taking into consideration finite size of molecules and also has some applications in industry for granular materials. The model is studied under the effect of fractional derivatives by employing two different definitions: β, and M-truncated. Further, new extended direct algebraic method is employed to construct the solitary wave solutions for the model. The solutions transmit several novel solutions, such as dark-singular, dark-bright, singular-periodic and dark solutions, and this method establishes the conditions required for the formation of these structures. To show the comparative analysis between two different fractional operators, results are graphically represented in the form of 2-dimensional and 3-dimensional visualizations. (C) The Author(s) 2024.
Název v anglickém jazyce
A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study
Popis výsledku anglicky
In this article, we explore exact solitary wave solutions to the van der Waals equation which is crucial for numerous applications involving a variety of physical occurrences. This system is used to define the behavior of real gases taking into consideration finite size of molecules and also has some applications in industry for granular materials. The model is studied under the effect of fractional derivatives by employing two different definitions: β, and M-truncated. Further, new extended direct algebraic method is employed to construct the solitary wave solutions for the model. The solutions transmit several novel solutions, such as dark-singular, dark-bright, singular-periodic and dark solutions, and this method establishes the conditions required for the formation of these structures. To show the comparative analysis between two different fractional operators, results are graphically represented in the form of 2-dimensional and 3-dimensional visualizations. (C) The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001317187900004
EID výsledku v databázi Scopus
2-s2.0-85204311268