Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The fractional soliton solutions of dynamical system arising in plasma physics: The comparative analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254775" target="_blank" >RIV/61989100:27740/24:10254775 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1110016824003089?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1110016824003089?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aej.2024.03.061" target="_blank" >10.1016/j.aej.2024.03.061</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The fractional soliton solutions of dynamical system arising in plasma physics: The comparative analysis

  • Popis výsledku v původním jazyce

    In light of fractional theory, this paper presents several new effective solitonic formulations for the Langmuir and ion sound wave equations. Prior to this study, no previous research has presented the comparision and obtained the generalized fractional soliton solutions of this kind with power law kernel and Mittag-Leffler kernel. The ion sound and Langmuir wave equations are essential in plasma physics, offering insights into the collective behavior of charged particles in plasmas and enabling diagnostics and control of these complex, ionized gas systems. The two distinct fractional order differential operators are substituted for the traditional order derivative to reshape the examined model. The Atangana-Baleanu non-singular and non-local operator and conformable fractional operator are the fractional-order operators that are used to create the fractional complex system equations for Langmuir waves and ion sound. A constructive approach new auxiliary equation method utilizes to obtain the exact analytical soliton solutions for ion sound and Langmuir wave equation. A wide range of soliton solutions is obtained, including mixed complex solitary shock solutions, singular solutions, mixed shock singular solutions, mixed trigonometric solutions, mixed singular solutions, exact solutions, mixed periodic solutions, and mixed hyperbolic solutions, dark soliton, bright soliton, trigonometric solutions, periodic results, and hyperbolic results. The solitons solution of the ion sound and Langmuir wave equations lies in their ability to maintain wave stability, their role in modeling wave propagation and nonlinear effects, their potential use as diagnostic tools, and their relevance in wave-particle interactions in plasma physics. The solitons provide a valuable framework for understanding the behavior of waves in plasmas and offer insights into the complex dynamics of these charged particle systems. A graphical comparison analysis of a few solutions is also shown here, taking into account appropriate parametric values through the use of the software package. Moreover, the results of this study have important implications for Hamilton&apos;s equations and generalized momentum, where solitons are employed in long-range interactions.

  • Název v anglickém jazyce

    The fractional soliton solutions of dynamical system arising in plasma physics: The comparative analysis

  • Popis výsledku anglicky

    In light of fractional theory, this paper presents several new effective solitonic formulations for the Langmuir and ion sound wave equations. Prior to this study, no previous research has presented the comparision and obtained the generalized fractional soliton solutions of this kind with power law kernel and Mittag-Leffler kernel. The ion sound and Langmuir wave equations are essential in plasma physics, offering insights into the collective behavior of charged particles in plasmas and enabling diagnostics and control of these complex, ionized gas systems. The two distinct fractional order differential operators are substituted for the traditional order derivative to reshape the examined model. The Atangana-Baleanu non-singular and non-local operator and conformable fractional operator are the fractional-order operators that are used to create the fractional complex system equations for Langmuir waves and ion sound. A constructive approach new auxiliary equation method utilizes to obtain the exact analytical soliton solutions for ion sound and Langmuir wave equation. A wide range of soliton solutions is obtained, including mixed complex solitary shock solutions, singular solutions, mixed shock singular solutions, mixed trigonometric solutions, mixed singular solutions, exact solutions, mixed periodic solutions, and mixed hyperbolic solutions, dark soliton, bright soliton, trigonometric solutions, periodic results, and hyperbolic results. The solitons solution of the ion sound and Langmuir wave equations lies in their ability to maintain wave stability, their role in modeling wave propagation and nonlinear effects, their potential use as diagnostic tools, and their relevance in wave-particle interactions in plasma physics. The solitons provide a valuable framework for understanding the behavior of waves in plasmas and offer insights into the complex dynamics of these charged particle systems. A graphical comparison analysis of a few solutions is also shown here, taking into account appropriate parametric values through the use of the software package. Moreover, the results of this study have important implications for Hamilton&apos;s equations and generalized momentum, where solitons are employed in long-range interactions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Alexandria Engineering Journal

  • ISSN

    1110-0168

  • e-ISSN

    2090-2670

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    247-261

  • Kód UT WoS článku

    001225634800001

  • EID výsledku v databázi Scopus

    2-s2.0-85189663670