Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255159" target="_blank" >RIV/61989100:27740/24:10255159 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11082-024-06904-8" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06904-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11082-024-06904-8" target="_blank" >10.1007/s11082-024-06904-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach

  • Popis výsledku v původním jazyce

    This work tackles the Heisenberg ferromagnet-type integrable Akbota equation. The Akbota equation is significant model to visualize and study the surface geometry and curve analysis. The Akbota equation is an integrable coupled system of differential equations with soliton solutions. It is a crucial tool for researching nonlinear phenomena in differential geometry of curves and surfaces, magnetism, and optics. The generalized projective Riccati equation method, the Sardar sub-equation method, and the G &apos;/G(2)-expansion method are the three separate analytical techniques used in this work. By using these approaches, exact analytical solutions for soliton waves are obtained, including dark, bright, singular, singular periodic, trigonometric, and hyperbolic waves. The creation of theoretical frameworks and the generalization of findings are made possible by analytical solutions. Researchers can frequently find patterns and relationships that apply more broadly by developing analytical solutions to particular cases, which results in the development of new theories and principles. The manuscript includes graphical representations, such as contour plots and two- or three-dimensional visualizations, in addition to theoretical derivations. These examples examine the propagation properties of the obtained soliton solutions and provide a promising basis for further research. Before this study, there is not existing any study in which, someone used these approaches and found solitons solutions.

  • Název v anglickém jazyce

    Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach

  • Popis výsledku anglicky

    This work tackles the Heisenberg ferromagnet-type integrable Akbota equation. The Akbota equation is significant model to visualize and study the surface geometry and curve analysis. The Akbota equation is an integrable coupled system of differential equations with soliton solutions. It is a crucial tool for researching nonlinear phenomena in differential geometry of curves and surfaces, magnetism, and optics. The generalized projective Riccati equation method, the Sardar sub-equation method, and the G &apos;/G(2)-expansion method are the three separate analytical techniques used in this work. By using these approaches, exact analytical solutions for soliton waves are obtained, including dark, bright, singular, singular periodic, trigonometric, and hyperbolic waves. The creation of theoretical frameworks and the generalization of findings are made possible by analytical solutions. Researchers can frequently find patterns and relationships that apply more broadly by developing analytical solutions to particular cases, which results in the development of new theories and principles. The manuscript includes graphical representations, such as contour plots and two- or three-dimensional visualizations, in addition to theoretical derivations. These examples examine the propagation properties of the obtained soliton solutions and provide a promising basis for further research. Before this study, there is not existing any study in which, someone used these approaches and found solitons solutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optical And Quantum Electronics

  • ISSN

    0306-8919

  • e-ISSN

    1572-817X

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    001217721200021

  • EID výsledku v databázi Scopus

    2-s2.0-85192518559