Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255159" target="_blank" >RIV/61989100:27740/24:10255159 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11082-024-06904-8" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06904-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11082-024-06904-8" target="_blank" >10.1007/s11082-024-06904-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach
Popis výsledku v původním jazyce
This work tackles the Heisenberg ferromagnet-type integrable Akbota equation. The Akbota equation is significant model to visualize and study the surface geometry and curve analysis. The Akbota equation is an integrable coupled system of differential equations with soliton solutions. It is a crucial tool for researching nonlinear phenomena in differential geometry of curves and surfaces, magnetism, and optics. The generalized projective Riccati equation method, the Sardar sub-equation method, and the G '/G(2)-expansion method are the three separate analytical techniques used in this work. By using these approaches, exact analytical solutions for soliton waves are obtained, including dark, bright, singular, singular periodic, trigonometric, and hyperbolic waves. The creation of theoretical frameworks and the generalization of findings are made possible by analytical solutions. Researchers can frequently find patterns and relationships that apply more broadly by developing analytical solutions to particular cases, which results in the development of new theories and principles. The manuscript includes graphical representations, such as contour plots and two- or three-dimensional visualizations, in addition to theoretical derivations. These examples examine the propagation properties of the obtained soliton solutions and provide a promising basis for further research. Before this study, there is not existing any study in which, someone used these approaches and found solitons solutions.
Název v anglickém jazyce
Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach
Popis výsledku anglicky
This work tackles the Heisenberg ferromagnet-type integrable Akbota equation. The Akbota equation is significant model to visualize and study the surface geometry and curve analysis. The Akbota equation is an integrable coupled system of differential equations with soliton solutions. It is a crucial tool for researching nonlinear phenomena in differential geometry of curves and surfaces, magnetism, and optics. The generalized projective Riccati equation method, the Sardar sub-equation method, and the G '/G(2)-expansion method are the three separate analytical techniques used in this work. By using these approaches, exact analytical solutions for soliton waves are obtained, including dark, bright, singular, singular periodic, trigonometric, and hyperbolic waves. The creation of theoretical frameworks and the generalization of findings are made possible by analytical solutions. Researchers can frequently find patterns and relationships that apply more broadly by developing analytical solutions to particular cases, which results in the development of new theories and principles. The manuscript includes graphical representations, such as contour plots and two- or three-dimensional visualizations, in addition to theoretical derivations. These examples examine the propagation properties of the obtained soliton solutions and provide a promising basis for further research. Before this study, there is not existing any study in which, someone used these approaches and found solitons solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optical And Quantum Electronics
ISSN
0306-8919
e-ISSN
1572-817X
Svazek periodika
56
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
001217721200021
EID výsledku v databázi Scopus
2-s2.0-85192518559