Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of Space-Time Dynamics of Akbota Equation using Sardar Sub-Equation and Khater Methods: Unveiling Bifurcation and Chaotic Structure

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255813" target="_blank" >RIV/61989100:27740/24:10255813 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10773-024-05733-5" target="_blank" >https://link.springer.com/article/10.1007/s10773-024-05733-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10773-024-05733-5" target="_blank" >10.1007/s10773-024-05733-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of Space-Time Dynamics of Akbota Equation using Sardar Sub-Equation and Khater Methods: Unveiling Bifurcation and Chaotic Structure

  • Popis výsledku v původním jazyce

    This paper focuses on obtaining exact solutions of nonlinear Akbota equation through the application of the modified Khater method and Sardar sub-equation method. Renowned as one of the latest and precise analytical schemes for nonlinear evolution equations, this method has proven its efficacy by generating diverse solutions for the model under consideration. The equation is crucial in the study of optical solitons, which are stable pulses of light that maintain their shape over long distances. The Akbota equation helps in understanding the behavior and stability of these solitons. The governing equation undergoes transformation into an ordinary differential equation through a well-suited wave transformation. This analytical simplification paves the way for the derivation of trigonometric, hyperbolic, and rational solutions through the proposed methods. To illuminate the physical behavior of the model, the study presents graphical plots of the selected solutions of Khater and Sardar sub-equation method. This visual representation, achieved by selecting appropriate values for arbitrary parameters, enhances the understanding of the system&apos;s dynamics. All calculations in this study are meticulously conducted using the Mathematica and Maple software, ensuring accuracy and reliability in the analysis of the obtained solution. Furthermore we investigate the sensitivity analysis of the dynamical system. (C) The Author(s) 2024.

  • Název v anglickém jazyce

    Investigation of Space-Time Dynamics of Akbota Equation using Sardar Sub-Equation and Khater Methods: Unveiling Bifurcation and Chaotic Structure

  • Popis výsledku anglicky

    This paper focuses on obtaining exact solutions of nonlinear Akbota equation through the application of the modified Khater method and Sardar sub-equation method. Renowned as one of the latest and precise analytical schemes for nonlinear evolution equations, this method has proven its efficacy by generating diverse solutions for the model under consideration. The equation is crucial in the study of optical solitons, which are stable pulses of light that maintain their shape over long distances. The Akbota equation helps in understanding the behavior and stability of these solitons. The governing equation undergoes transformation into an ordinary differential equation through a well-suited wave transformation. This analytical simplification paves the way for the derivation of trigonometric, hyperbolic, and rational solutions through the proposed methods. To illuminate the physical behavior of the model, the study presents graphical plots of the selected solutions of Khater and Sardar sub-equation method. This visual representation, achieved by selecting appropriate values for arbitrary parameters, enhances the understanding of the system&apos;s dynamics. All calculations in this study are meticulously conducted using the Mathematica and Maple software, ensuring accuracy and reliability in the analysis of the obtained solution. Furthermore we investigate the sensitivity analysis of the dynamical system. (C) The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Theoretical Physics

  • ISSN

    0020-7748

  • e-ISSN

    1572-9575

  • Svazek periodika

    63

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    001296588600001

  • EID výsledku v databázi Scopus

    2-s2.0-85201723031