The generalized soliton wave structures and propagation visualization for Akbota equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256442" target="_blank" >RIV/61989100:27740/24:10256442 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/document/doi/10.1515/zna-2024-0120/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/zna-2024-0120/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/zna-2024-0120" target="_blank" >10.1515/zna-2024-0120</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The generalized soliton wave structures and propagation visualization for Akbota equation
Popis výsledku v původním jazyce
This paper explores in detail the integrable Akbota equation, a Heisenberg ferromagnet-type problem that is essential to the study of surface and curve geometry. A variety of soliton families are represented by the generalized solitonic wave profiles that are produced using the improved modified Sardar sub-equation technique, which is renowned for its accuracy and dependability. There has never been a study that used this technique before the current one. As a result, the solitonic wave structures have kink, dark, brilliant, king-singular, dark-singular, dark-bright, exponential, trigonometric, and rational solitonic structures, among other characteristics. In order to check the energy conservation, the Hamiltonian function is created and energy level demonstrated. The sensitivity analysis is also presented at various initial conditions. The graphical representation is also depicted along with the appropriate parametric values.
Název v anglickém jazyce
The generalized soliton wave structures and propagation visualization for Akbota equation
Popis výsledku anglicky
This paper explores in detail the integrable Akbota equation, a Heisenberg ferromagnet-type problem that is essential to the study of surface and curve geometry. A variety of soliton families are represented by the generalized solitonic wave profiles that are produced using the improved modified Sardar sub-equation technique, which is renowned for its accuracy and dependability. There has never been a study that used this technique before the current one. As a result, the solitonic wave structures have kink, dark, brilliant, king-singular, dark-singular, dark-bright, exponential, trigonometric, and rational solitonic structures, among other characteristics. In order to check the energy conservation, the Hamiltonian function is created and energy level demonstrated. The sensitivity analysis is also presented at various initial conditions. The graphical representation is also depicted along with the appropriate parametric values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences
ISSN
0932-0784
e-ISSN
1865-7109
Svazek periodika
79
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
1075-1091
Kód UT WoS článku
001348864500001
EID výsledku v databázi Scopus
2-s2.0-85210169308