Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bifurcation and chaos: Unraveling soliton solutions in a couple fractional-order nonlinear evolution equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256382" target="_blank" >RIV/61989100:27740/24:10256382 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.degruyter.com/document/doi/10.1515/nleng-2024-0024/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/nleng-2024-0024/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/nleng-2024-0024" target="_blank" >10.1515/nleng-2024-0024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bifurcation and chaos: Unraveling soliton solutions in a couple fractional-order nonlinear evolution equation

  • Popis výsledku v původním jazyce

    Shallow water waves represent a significant and extensively employed wave type in coastal regions. The unconventional bidirectional transmission of extended waves across shallow water is elucidated through nonlinear fractional partial differential equations, specifically the space-time fractional-coupled Whitham-Broer-Kaup equation. The application of two distinct analytical methods, namely, the generalized logistic equation approach and unified approach, is employed to construct various solutions such as bright solitons, singular solitary waves, kink solitons, and dark solitons for the proposed equation. The physical behavior of calculated results is graphically represented through density, two- and three-dimensional plots. The obtained solutions could have significant implications across a range of fields including plasma physics, biology, quantum computing, fluid dynamics, optics, communication technology, hydrodynamics, environmental sciences, and ocean engineering. Furthermore, the qualitative assessment of the unperturbed planar system is conducted through the utilization of bifurcation theory. Subsequently, the model undergoes the introduction of an outward force with the aim of inducing disruption, resulting in the emergence of a perturbed dynamical system. The detection of chaotic trajectory in the perturbed system is accomplished through the utilization of a variety of tools designed for chaos detection. The execution of the Runge-Kutta method is employed to assess the sensitivity of the examined model. The results obtained serve to underscore the effectiveness and applicability of the proposed methodologies for the assessment of soliton structures within a broad spectrum of nonlinear models.

  • Název v anglickém jazyce

    Bifurcation and chaos: Unraveling soliton solutions in a couple fractional-order nonlinear evolution equation

  • Popis výsledku anglicky

    Shallow water waves represent a significant and extensively employed wave type in coastal regions. The unconventional bidirectional transmission of extended waves across shallow water is elucidated through nonlinear fractional partial differential equations, specifically the space-time fractional-coupled Whitham-Broer-Kaup equation. The application of two distinct analytical methods, namely, the generalized logistic equation approach and unified approach, is employed to construct various solutions such as bright solitons, singular solitary waves, kink solitons, and dark solitons for the proposed equation. The physical behavior of calculated results is graphically represented through density, two- and three-dimensional plots. The obtained solutions could have significant implications across a range of fields including plasma physics, biology, quantum computing, fluid dynamics, optics, communication technology, hydrodynamics, environmental sciences, and ocean engineering. Furthermore, the qualitative assessment of the unperturbed planar system is conducted through the utilization of bifurcation theory. Subsequently, the model undergoes the introduction of an outward force with the aim of inducing disruption, resulting in the emergence of a perturbed dynamical system. The detection of chaotic trajectory in the perturbed system is accomplished through the utilization of a variety of tools designed for chaos detection. The execution of the Runge-Kutta method is employed to assess the sensitivity of the examined model. The results obtained serve to underscore the effectiveness and applicability of the proposed methodologies for the assessment of soliton structures within a broad spectrum of nonlinear models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Engineering

  • ISSN

    2192-8010

  • e-ISSN

    2192-8029

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    001364298200001

  • EID výsledku v databázi Scopus

    2-s2.0-85213017090