Analyzing sensitivity and multi-soliton solutions in the Estevez-Mansfield-Clarkson equation: Insights into dynamics of bifurcation and chaos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255205" target="_blank" >RIV/61989100:27740/24:10255205 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124002122?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124002122?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100826" target="_blank" >10.1016/j.padiff.2024.100826</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing sensitivity and multi-soliton solutions in the Estevez-Mansfield-Clarkson equation: Insights into dynamics of bifurcation and chaos
Popis výsledku v původním jazyce
In this investigation, an analysis of the Estevez-Mansfield-Clarkson equation, a model equation employed in the examination of shape formation in liquid drops, optics, and mathematical physics, is undertaken. Firstly, multiple wave solitons, including 1-soliton, 2-soliton, and 3-soliton structures, are successfully generated through the utilization of a multiple exp-function technique. Subsequently, the conversion of the partial differential equation into an ordinary differential equation is executed. The extraction of various traveling wave patterns, such as kink, anti-kink, periodic, and exponential functions, is then carried out using the new auxiliary equation method. The outcomes are visually represented through 3-dimensional, 2-dimensional, and density plots, employing Mathematica software. Following this, an investigation into the qualitative dynamics of the equation is conducted, examining aspects such as bifurcation and chaos. Critical points are identified for bifurcation, and the dynamical system undergoes an outward force, resulting in the identification of chaotic patterns. Furthermore, the model's sensitivity across different initial values is explored. These solutions hold immense significance in the domains of nonlinear fiber optics and telecommunications that help in deepening our knowledge about the basic physical model. (C) 2024 The Author(s)
Název v anglickém jazyce
Analyzing sensitivity and multi-soliton solutions in the Estevez-Mansfield-Clarkson equation: Insights into dynamics of bifurcation and chaos
Popis výsledku anglicky
In this investigation, an analysis of the Estevez-Mansfield-Clarkson equation, a model equation employed in the examination of shape formation in liquid drops, optics, and mathematical physics, is undertaken. Firstly, multiple wave solitons, including 1-soliton, 2-soliton, and 3-soliton structures, are successfully generated through the utilization of a multiple exp-function technique. Subsequently, the conversion of the partial differential equation into an ordinary differential equation is executed. The extraction of various traveling wave patterns, such as kink, anti-kink, periodic, and exponential functions, is then carried out using the new auxiliary equation method. The outcomes are visually represented through 3-dimensional, 2-dimensional, and density plots, employing Mathematica software. Following this, an investigation into the qualitative dynamics of the equation is conducted, examining aspects such as bifurcation and chaos. Critical points are identified for bifurcation, and the dynamical system undergoes an outward force, resulting in the identification of chaotic patterns. Furthermore, the model's sensitivity across different initial values is explored. These solutions hold immense significance in the domains of nonlinear fiber optics and telecommunications that help in deepening our knowledge about the basic physical model. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85199515690