Analyzing Dynamics: Lie Symmetry Approach to Bifurcation, Chaos, Multistability, and Solitons in Extended (3+1)-Dimensional Wave Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255137" target="_blank" >RIV/61989100:27740/24:10255137 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/16/5/608" target="_blank" >https://www.mdpi.com/2073-8994/16/5/608</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym16050608" target="_blank" >10.3390/sym16050608</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing Dynamics: Lie Symmetry Approach to Bifurcation, Chaos, Multistability, and Solitons in Extended (3+1)-Dimensional Wave Equation
Popis výsledku v původním jazyce
The examination of new (3 + 1)-dimensional wave equations is undertaken in this study. Initially, the identification of the Lie symmetries of the model is carried out through the utilization of the Lie symmetry approach. The commutator and adjoint table of the symmetries are presented. Subsequently, the model under discussion is transformed into an ordinary differential equation using these symmetries. The construction of several bright, kink, and dark solitons for the suggested equation is then achieved through the utilization of the new auxiliary equation method. Subsequently, an analysis of the dynamical nature of the model is conducted, encompassing various angles such as bifurcation, chaos, and sensitivity. Bifurcation occurs at critical points within a dynamical system, accompanied by the application of an outward force, which unveils the emergence of chaotic phenomena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents are presented to illustrate these chaotic behaviors. Furthermore, the sensitivity of the investigated model is executed utilizing the Runge-Kutta method. This analysis confirms that the stability of the solution is minimally affected by small changes in initial conditions. The attained outcomes show the effectiveness of the presented methods in evaluating solitons of multiple nonlinear models.
Název v anglickém jazyce
Analyzing Dynamics: Lie Symmetry Approach to Bifurcation, Chaos, Multistability, and Solitons in Extended (3+1)-Dimensional Wave Equation
Popis výsledku anglicky
The examination of new (3 + 1)-dimensional wave equations is undertaken in this study. Initially, the identification of the Lie symmetries of the model is carried out through the utilization of the Lie symmetry approach. The commutator and adjoint table of the symmetries are presented. Subsequently, the model under discussion is transformed into an ordinary differential equation using these symmetries. The construction of several bright, kink, and dark solitons for the suggested equation is then achieved through the utilization of the new auxiliary equation method. Subsequently, an analysis of the dynamical nature of the model is conducted, encompassing various angles such as bifurcation, chaos, and sensitivity. Bifurcation occurs at critical points within a dynamical system, accompanied by the application of an outward force, which unveils the emergence of chaotic phenomena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents are presented to illustrate these chaotic behaviors. Furthermore, the sensitivity of the investigated model is executed utilizing the Runge-Kutta method. This analysis confirms that the stability of the solution is minimally affected by small changes in initial conditions. The attained outcomes show the effectiveness of the presented methods in evaluating solitons of multiple nonlinear models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
16
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001231486000001
EID výsledku v databázi Scopus
2-s2.0-85194085589