Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255685" target="_blank" >RIV/61989100:27740/24:10255685 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124003127?via%3Dihub#d1e13372" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124003127?via%3Dihub#d1e13372</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100926" target="_blank" >10.1016/j.padiff.2024.100926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits
Popis výsledku v původním jazyce
In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model's sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems. (C) 2024
Název v anglickém jazyce
Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits
Popis výsledku anglicky
In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model's sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems. (C) 2024
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
12
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85204402304