Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255685" target="_blank" >RIV/61989100:27740/24:10255685 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2666818124003127?via%3Dihub#d1e13372" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124003127?via%3Dihub#d1e13372</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.padiff.2024.100926" target="_blank" >10.1016/j.padiff.2024.100926</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits

  • Popis výsledku v původním jazyce

    In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model&apos;s sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems. (C) 2024

  • Název v anglickém jazyce

    Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits

  • Popis výsledku anglicky

    In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model&apos;s sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems. (C) 2024

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Partial Differential Equations in Applied Mathematics

  • ISSN

    2666-8181

  • e-ISSN

    2666-8181

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85204402304