Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Study of magnetic fields using dynamical patterns and sensitivity analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254850" target="_blank" >RIV/61989100:27740/24:10254850 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0960077924003795?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077924003795?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2024.114827" target="_blank" >10.1016/j.chaos.2024.114827</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Study of magnetic fields using dynamical patterns and sensitivity analysis

  • Popis výsledku v původním jazyce

    The exploration of the nonlinear dynamics related to the new coupled Konno-Oono equation, which determines the propagation of magnetic fields, is the focus of this work. Through the employing of Lie group analysis, the bifurcation phase portraits, and chaos theory, the project will investigate symmetry reductions in dynamical systems and examine the dynamic behavior of perturbed dynamical systems. The 3D phase portrait, 2D phase portrait, Lyapunov exponent, time series analysis, sensitivity analysis, and an examination of the existence of multistability in the autonomous system under various initial conditions constitute a few of the methods used for recognizing chaotic behavior. Furthermore, the investigation constructs general solutions for solitary wave solutions, such as exponential and hyperbolic function, singular, dark, and bright soliton solutions, by using the new Kudryashov methodology to determine the investigated equation analytically. These solutions are shown graphically as 2D, 3D, and contour plots with specifically selected values. They include as well with the related constraint circumstances. Additionally, a discussion and a visual illustration of the considered equation&apos;s sensitivity analysis are presented. The observations demonstrate that the aforementioned approach is an effective procedure for treating a variety of nonlinear PDE systems that arise in nonlinear physics analytically. The plot of the Lyapunov exponents is employed to validate the chaotic dynamics of the studied model. Additionally, the multiplier method is employed to determine the conserved vectors for the analyzed problem. (C) 2024 Elsevier Ltd

  • Název v anglickém jazyce

    Study of magnetic fields using dynamical patterns and sensitivity analysis

  • Popis výsledku anglicky

    The exploration of the nonlinear dynamics related to the new coupled Konno-Oono equation, which determines the propagation of magnetic fields, is the focus of this work. Through the employing of Lie group analysis, the bifurcation phase portraits, and chaos theory, the project will investigate symmetry reductions in dynamical systems and examine the dynamic behavior of perturbed dynamical systems. The 3D phase portrait, 2D phase portrait, Lyapunov exponent, time series analysis, sensitivity analysis, and an examination of the existence of multistability in the autonomous system under various initial conditions constitute a few of the methods used for recognizing chaotic behavior. Furthermore, the investigation constructs general solutions for solitary wave solutions, such as exponential and hyperbolic function, singular, dark, and bright soliton solutions, by using the new Kudryashov methodology to determine the investigated equation analytically. These solutions are shown graphically as 2D, 3D, and contour plots with specifically selected values. They include as well with the related constraint circumstances. Additionally, a discussion and a visual illustration of the considered equation&apos;s sensitivity analysis are presented. The observations demonstrate that the aforementioned approach is an effective procedure for treating a variety of nonlinear PDE systems that arise in nonlinear physics analytically. The plot of the Lyapunov exponents is employed to validate the chaotic dynamics of the studied model. Additionally, the multiplier method is employed to determine the conserved vectors for the analyzed problem. (C) 2024 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos, Solitons &amp; Fractals

  • ISSN

    0960-0779

  • e-ISSN

  • Svazek periodika

    182

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85189685137