Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255133" target="_blank" >RIV/61989100:27740/24:10255133 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1110016824003764?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1110016824003764?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aej.2024.04.003" target="_blank" >10.1016/j.aej.2024.04.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures
Popis výsledku v původním jazyce
In this paper, the fractional space-time nonlinear Chen -Lee -Liu equation has been considered using various methods. The investigation of the transition from periodic to quasi -periodic behavior has been conducted using a saddle -node bifurcation approach. The paper reports the conditions of multi -dimensional bifurcations of dynamical solutions. Additionally, a direct algebraic method has been used to calculate various 2D and 3D solitonic structures of the equation, and an analysis of their accuracy and effectiveness has been conducted. Furthermore, the Galilean transformation has been used to convert the equation into a planar dynamical system, which is further utilized to obtain bifurcations and chaotic structures. Chaotic structures of perturbed dynamical system are observed and detected through chaos detecting tools such as 2D -phase portrait, 3D -phase portrait, time series analysis, multistability and Lyapunov exponents over time. Further, sensitivity behavior for a range of initial conditions, both perturbed and unperturbed. The results suggest that the investigated equation exhibits a higher degree of multi -stability.
Název v anglickém jazyce
Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures
Popis výsledku anglicky
In this paper, the fractional space-time nonlinear Chen -Lee -Liu equation has been considered using various methods. The investigation of the transition from periodic to quasi -periodic behavior has been conducted using a saddle -node bifurcation approach. The paper reports the conditions of multi -dimensional bifurcations of dynamical solutions. Additionally, a direct algebraic method has been used to calculate various 2D and 3D solitonic structures of the equation, and an analysis of their accuracy and effectiveness has been conducted. Furthermore, the Galilean transformation has been used to convert the equation into a planar dynamical system, which is further utilized to obtain bifurcations and chaotic structures. Chaotic structures of perturbed dynamical system are observed and detected through chaos detecting tools such as 2D -phase portrait, 3D -phase portrait, time series analysis, multistability and Lyapunov exponents over time. Further, sensitivity behavior for a range of initial conditions, both perturbed and unperturbed. The results suggest that the investigated equation exhibits a higher degree of multi -stability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Alexandria Engineering Journal
ISSN
1110-0168
e-ISSN
2090-2670
Svazek periodika
97
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
283-293
Kód UT WoS článku
001233464100001
EID výsledku v databázi Scopus
2-s2.0-85190821216