Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255133" target="_blank" >RIV/61989100:27740/24:10255133 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1110016824003764?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1110016824003764?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aej.2024.04.003" target="_blank" >10.1016/j.aej.2024.04.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures

  • Popis výsledku v původním jazyce

    In this paper, the fractional space-time nonlinear Chen -Lee -Liu equation has been considered using various methods. The investigation of the transition from periodic to quasi -periodic behavior has been conducted using a saddle -node bifurcation approach. The paper reports the conditions of multi -dimensional bifurcations of dynamical solutions. Additionally, a direct algebraic method has been used to calculate various 2D and 3D solitonic structures of the equation, and an analysis of their accuracy and effectiveness has been conducted. Furthermore, the Galilean transformation has been used to convert the equation into a planar dynamical system, which is further utilized to obtain bifurcations and chaotic structures. Chaotic structures of perturbed dynamical system are observed and detected through chaos detecting tools such as 2D -phase portrait, 3D -phase portrait, time series analysis, multistability and Lyapunov exponents over time. Further, sensitivity behavior for a range of initial conditions, both perturbed and unperturbed. The results suggest that the investigated equation exhibits a higher degree of multi -stability.

  • Název v anglickém jazyce

    Investigation of space-time dynamics of perturbed and unperturbed Chen-Lee-Liu equation: Unveiling bifurcations and chaotic structures

  • Popis výsledku anglicky

    In this paper, the fractional space-time nonlinear Chen -Lee -Liu equation has been considered using various methods. The investigation of the transition from periodic to quasi -periodic behavior has been conducted using a saddle -node bifurcation approach. The paper reports the conditions of multi -dimensional bifurcations of dynamical solutions. Additionally, a direct algebraic method has been used to calculate various 2D and 3D solitonic structures of the equation, and an analysis of their accuracy and effectiveness has been conducted. Furthermore, the Galilean transformation has been used to convert the equation into a planar dynamical system, which is further utilized to obtain bifurcations and chaotic structures. Chaotic structures of perturbed dynamical system are observed and detected through chaos detecting tools such as 2D -phase portrait, 3D -phase portrait, time series analysis, multistability and Lyapunov exponents over time. Further, sensitivity behavior for a range of initial conditions, both perturbed and unperturbed. The results suggest that the investigated equation exhibits a higher degree of multi -stability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Alexandria Engineering Journal

  • ISSN

    1110-0168

  • e-ISSN

    2090-2670

  • Svazek periodika

    97

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    283-293

  • Kód UT WoS článku

    001233464100001

  • EID výsledku v databázi Scopus

    2-s2.0-85190821216