Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254852" target="_blank" >RIV/61989100:27740/24:10254852 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11082-024-06347-1" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06347-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11082-024-06347-1" target="_blank" >10.1007/s11082-024-06347-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation

  • Popis výsledku v původním jazyce

    This manuscript delves into the examination of the stochastic fractional derivative of Drinfel&apos;d-Sokolov-Wilson equation, a mathematical model applicable in the fields of electromagnetism and fluid mechanics. In our study, the proposed equation is through examined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, including the unperturbed term, are also examined, and the various 2D and 3D solitonic structures are computed using the Tanh-method. It is found that a saddle point bifurcation causes the transition from periodic behavior to quasi-periodic behavior in a sensitive area. Further analysis reveals favorable conditions for the multidimensional bifurcation of dynamic behavioral solutions. Different types of wave solutions are identified in certain solutions by entering numerous values for the parameters, demonstrating the effectiveness and precision of Tanh-methods. A planar dynamical system is then created using the Galilean transformation, with the actual model serving as a starting point. It is observed that a few physical criteria in the discussed equation exhibit more multi-stable properties, as many multi-stability structures are employed by some individuals. Moreover, sensitivity behavior is employed to examine perturbed dynamical systems across diverse initial conditions. The techniques and findings presented in this paper can be extended to investigate a broader spectrum of nonlinear wave phenomena.

  • Název v anglickém jazyce

    Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation

  • Popis výsledku anglicky

    This manuscript delves into the examination of the stochastic fractional derivative of Drinfel&apos;d-Sokolov-Wilson equation, a mathematical model applicable in the fields of electromagnetism and fluid mechanics. In our study, the proposed equation is through examined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, including the unperturbed term, are also examined, and the various 2D and 3D solitonic structures are computed using the Tanh-method. It is found that a saddle point bifurcation causes the transition from periodic behavior to quasi-periodic behavior in a sensitive area. Further analysis reveals favorable conditions for the multidimensional bifurcation of dynamic behavioral solutions. Different types of wave solutions are identified in certain solutions by entering numerous values for the parameters, demonstrating the effectiveness and precision of Tanh-methods. A planar dynamical system is then created using the Galilean transformation, with the actual model serving as a starting point. It is observed that a few physical criteria in the discussed equation exhibit more multi-stable properties, as many multi-stability structures are employed by some individuals. Moreover, sensitivity behavior is employed to examine perturbed dynamical systems across diverse initial conditions. The techniques and findings presented in this paper can be extended to investigate a broader spectrum of nonlinear wave phenomena.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optical And Quantum Electronics

  • ISSN

    0306-8919

  • e-ISSN

    1572-817X

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    001195953300014

  • EID výsledku v databázi Scopus

    2-s2.0-85188916390