Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254852" target="_blank" >RIV/61989100:27740/24:10254852 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11082-024-06347-1" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06347-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11082-024-06347-1" target="_blank" >10.1007/s11082-024-06347-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation
Popis výsledku v původním jazyce
This manuscript delves into the examination of the stochastic fractional derivative of Drinfel'd-Sokolov-Wilson equation, a mathematical model applicable in the fields of electromagnetism and fluid mechanics. In our study, the proposed equation is through examined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, including the unperturbed term, are also examined, and the various 2D and 3D solitonic structures are computed using the Tanh-method. It is found that a saddle point bifurcation causes the transition from periodic behavior to quasi-periodic behavior in a sensitive area. Further analysis reveals favorable conditions for the multidimensional bifurcation of dynamic behavioral solutions. Different types of wave solutions are identified in certain solutions by entering numerous values for the parameters, demonstrating the effectiveness and precision of Tanh-methods. A planar dynamical system is then created using the Galilean transformation, with the actual model serving as a starting point. It is observed that a few physical criteria in the discussed equation exhibit more multi-stable properties, as many multi-stability structures are employed by some individuals. Moreover, sensitivity behavior is employed to examine perturbed dynamical systems across diverse initial conditions. The techniques and findings presented in this paper can be extended to investigate a broader spectrum of nonlinear wave phenomena.
Název v anglickém jazyce
Multi-dimensional phase portraits of stochastic fractional derivatives for nonlinear dynamical systems with solitary wave formation
Popis výsledku anglicky
This manuscript delves into the examination of the stochastic fractional derivative of Drinfel'd-Sokolov-Wilson equation, a mathematical model applicable in the fields of electromagnetism and fluid mechanics. In our study, the proposed equation is through examined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, including the unperturbed term, are also examined, and the various 2D and 3D solitonic structures are computed using the Tanh-method. It is found that a saddle point bifurcation causes the transition from periodic behavior to quasi-periodic behavior in a sensitive area. Further analysis reveals favorable conditions for the multidimensional bifurcation of dynamic behavioral solutions. Different types of wave solutions are identified in certain solutions by entering numerous values for the parameters, demonstrating the effectiveness and precision of Tanh-methods. A planar dynamical system is then created using the Galilean transformation, with the actual model serving as a starting point. It is observed that a few physical criteria in the discussed equation exhibit more multi-stable properties, as many multi-stability structures are employed by some individuals. Moreover, sensitivity behavior is employed to examine perturbed dynamical systems across diverse initial conditions. The techniques and findings presented in this paper can be extended to investigate a broader spectrum of nonlinear wave phenomena.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optical And Quantum Electronics
ISSN
0306-8919
e-ISSN
1572-817X
Svazek periodika
56
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
001195953300014
EID výsledku v databázi Scopus
2-s2.0-85188916390