Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Microgrid energy management using metaheuristic optimization algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254703" target="_blank" >RIV/61989100:27240/23:10254703 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494622010304?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494622010304?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2022.109981" target="_blank" >10.1016/j.asoc.2022.109981</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Microgrid energy management using metaheuristic optimization algorithms

  • Popis výsledku v původním jazyce

    This article addresses the economic dispatch problem of microgrids. Firstly, it presents the application of both traditional and newly introduced metaheuristic optimization algorithms to solve for the optimal power flow problem for the IEEE 30 bus system after which the best performing algorithm is chosen for cost-effective economic dispatch in a microgrid designed upon the microgrid facility present at Wroclaw University of Science and Technology. All algorithms investigated have been combined with the academic power analysis tool, MATPOWER. The idea behind the approach is to find a compromise between the solution search capabilities of the metaheuristics and the optimized performance of MATPOWER. The algorithms explored include 3 traditional algorithms which are the genetic algorithm, particle swarm optimization and mixed integer distributed ant colony optimization and 2 recently developed algorithms which are the political optimizer and the Lichtenberg algorithm. Hyperparameter tuning was carried out for all investigated algorithms. The results have shown that the ant-colony based algorithm is the most suitable of all the choices in terms of having the best convergence time of 19.17 s, a final solution value of 801.57 ($/h) and reliability in terms of reproducing the best solution for the test system. It is then used for economic dispatch which is guided by an objective function that minimizes the levelized cost of energy in the microgrid.

  • Název v anglickém jazyce

    Microgrid energy management using metaheuristic optimization algorithms

  • Popis výsledku anglicky

    This article addresses the economic dispatch problem of microgrids. Firstly, it presents the application of both traditional and newly introduced metaheuristic optimization algorithms to solve for the optimal power flow problem for the IEEE 30 bus system after which the best performing algorithm is chosen for cost-effective economic dispatch in a microgrid designed upon the microgrid facility present at Wroclaw University of Science and Technology. All algorithms investigated have been combined with the academic power analysis tool, MATPOWER. The idea behind the approach is to find a compromise between the solution search capabilities of the metaheuristics and the optimized performance of MATPOWER. The algorithms explored include 3 traditional algorithms which are the genetic algorithm, particle swarm optimization and mixed integer distributed ant colony optimization and 2 recently developed algorithms which are the political optimizer and the Lichtenberg algorithm. Hyperparameter tuning was carried out for all investigated algorithms. The results have shown that the ant-colony based algorithm is the most suitable of all the choices in terms of having the best convergence time of 19.17 s, a final solution value of 801.57 ($/h) and reliability in terms of reproducing the best solution for the test system. It is then used for economic dispatch which is guided by an objective function that minimizes the levelized cost of energy in the microgrid.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    134

  • Číslo periodika v rámci svazku

    February 2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000969150900001

  • EID výsledku v databázi Scopus

    2-s2.0-85145440189