Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimalizace pomocí mravenčích kolonií s kastami

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145814" target="_blank" >RIV/68407700:21230/08:03145814 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ant Colony Optimization with Castes

  • Popis výsledku v původním jazyce

    Ant Colony Optimization (ACO) is a nature inspired metaheuristic for solving optimization problems. We present a new general approach for improving ACO adaptivity to problems, Ant Colony Optimization with Castes (ACO+C). By using groups of ants with different characteristics, known as castes in nature, we can achieve better results and faster convergence thanks to possibility to utilize different types of ant behaviour in parallel. This general principle is tested on one particular ACO algorithm: MAX-MIN Ant System solving Symmetric and Asymmetric Travelling Salesman Problem. As experiments show, our method brings a significant improvement in the convergence speed as well as in the quality of solution for all tested instances.

  • Název v anglickém jazyce

    Ant Colony Optimization with Castes

  • Popis výsledku anglicky

    Ant Colony Optimization (ACO) is a nature inspired metaheuristic for solving optimization problems. We present a new general approach for improving ACO adaptivity to problems, Ant Colony Optimization with Castes (ACO+C). By using groups of ants with different characteristics, known as castes in nature, we can achieve better results and faster convergence thanks to possibility to utilize different types of ant behaviour in parallel. This general principle is tested on one particular ACO algorithm: MAX-MIN Ant System solving Symmetric and Asymmetric Travelling Salesman Problem. As experiments show, our method brings a significant improvement in the convergence speed as well as in the quality of solution for all tested instances.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008, PT I

  • ISBN

    978-3-540-87535-2

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000259566200045